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Abstract—Beyond the transport of uncompressed video over
IP networks, defined in standards such as ST2022-6, the ability
to build software-based Video Processing Functions (VPF) on
commodity hardware and using general purpose Operating
Systems is the next logical step in the evolution of the media
industry towards an “all-IP” world. In that context, understand-
ing the jitter induced on an ST2022-6 stream by a commodity
platform is essential. This paper describes a general methodology
to enumerate jitter sources on commodity platforms and to
quantify their relative contribution to the overall system jitter.
The methodology is applied to the Linux kernel, producing a
classification of the different sources of jitter, and a quantification
of their impact.

I. INTRODUCTION

Live video processing in the broadcasting industry has
historically been done using dedicated hardware appliances,
interconnected by Serial Digital Interface (SDI) family inter-
faces e.g., ST292M [1] for SDI over coaxial cable for HD
video streams. Development of protocols such as ST2022-
6 and ST2110-20 [2], [3], specifying encapsulation of SDI
data over Ethernet/IP networks, has since 2012 indicated a
trend towards replacing dedicated appliances with commodity
hardware and networks, to gain operational flexibility and to
reduce cost. These protocols — used in the video production
world — differ from those used by end-users on the Internet —
the video distribution world — since the former encapsulate
raw video data whereas the latter rely on compression: the
nominal rate of an ST2022-6 stream is never lower than
1.5 Gbit/s, compared to the tens of Mbit/s for a compressed
distribution HD stream. These standards for video production
streams require the sender to emit packets at a Constant Bitrate
(CBR). Also, while distribution streams can tolerate delays in
the order of seconds, to allow for the interactivity required for
broadcasting operations, e.g., video stream mixing, production
streams bound the delay at a few milliseconds.

This informs packet buffer dimensioning on video produc-
tion appliances: more buffering at the ingress of a device,
yields a greater delay. Thus, ST2022-6 receivers have small
buffers – a side-effect of which is, that production streams can-
not accommodate for much, if any, jitter. Thus, software-based
Video Processing Functions (VPF) executed on Commodity
Off-The-Shelf (COTS) servers need to minimize the jitter they
introduce as much as possible. As any VPF needs to receive
packets first, it is necessary to understand what minimal jitter
the Operating System (OS) and its network stack introduce.

A. Related Work

Understanding jitter on general-purpose OS’es has, espe-
cially, been studied for real-time or High-Performance Com-
puting (HPC) applications. OS jitter quantifies how unpre-
dictable the performance of a running application will be.
An experimental analysis of the effects hereof on CPU-bound
tasks in a distributed HPC environment is given in [4] – which
shows that jitter affects the overall performance of multi-stage
workloads, where each stage is running on parallel nodes.
Specifically, jitter significantly impacts the synchronisation
steps between each stage, incurring a significant waste of
computing capacity. In-kernel methods to quantify accurately
the contribution of each jitter source to the overall system jitter
are developed and evaluated in [5], [6].

For hard real-time applications, a deterministic lower bound
on the performance is required. A recurring problem is de-
termining the variability of the response time i.e., the total
elapsed time from when an interrupt request is raised, and
until the corresponding application-level thread is scheduled.
From this perspective, [7] compares Real-Time Operating
Systems (RTOS) and general purpose OS’es, in the context
of embedded systems used in experimental nuclear physics.

Aside from the analysis in [8] of periodic networked sys-
tems with events in the order of 100 µs on a FreeBSD-based
COTS server, little attention has been given to characterising
jitter on periodic events.

Yet, with ST2022-6 prescribing a CBR stream giving rise to
a packet arrival time with a periodicity in the order of 7.41 µs,
if a VPF is to be successfully executed on a COTS server, a
granular understanding of its jitter properties is required.

B. Statement of Purpose

This paper characterises the jitter, introduced by a COTS
x86 server running a Linux-based operating system, upon
reception of network packets corresponding to an ST2022-6
video stream. This includes an analysis of the packet reception
path in the Linux kernel, an enumeration of identified jitter
sources, and an experimental quantification of the relative
contribution of each of these.

C. Paper Outline

The remainder of this paper is organised as follows: sec-
tion II describes the data-path taken by a packet, from wire
to application, enumerating the potential sources of jitter that
can be encountered. Section III motivates and introduces the
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Figure 1. Schematic view of the path taken by a data packet – from Network
Interface Card (NIC) to Application.

experimental setup used to quantify these sources of jitter,
which is then used for producing the results presented in
section IV. This paper is concluded in section V.

II. FROM WIRE TO APPLICATION

The jitter sources along the path of a packet through a COTS
server, depicted in figure 1, from its arrival at the Network
Interface Card (NIC) until it is delivered to an application, are
analysed in this section.

A. From Wire to Interrupt

When a packet arrives at the NIC, it is decoded and copied
into RAM using Direct Memory Access (DMA). DMA allows
external devices, such as NICs, controlled access to a portion
of the CPU’s RAM.

DMA uses the system PCI bus, which is a shared resource
with potential contention for access – and hence, is a potential
source of jitter. Another source of jitter is access to the RAM
itself, since the NIC (hardware), and the NIC driver (part of
the operating system) will be competing for access hereto.
Finally, multiple layers of cache, which are shared with all
the processes of a CPU, can introduce further jitter during the
phases of copying data to and from RAM.

Once a packet has been copied into RAM, the NIC raises an
interrupt to signal to the CPU that a new packet is available.
Interrupts are also raised through the system PCI bus, where
contention may again introduce jitter. However, some NICs
also implement Interrupt Rate Throttling (ITR), which delays
or suppress some interrupts from being raised, so as to avoid
interrupt overload at high data rates. While this feature does
reduce the OS per-packet processing cost, it does constitute an

additional source of jitter, especially among packets received
in a periodic stream. Illustrating this by a simple example, if
ITR suppresses 9 out of 10 interrupts, then packet number 1
in a stream will incur a further delay of receipt of another 9
packets before an interrupt is raised, and it can be processed,
whereas receipt of packet number 10 will cause an interrupt
to be raised immediately.

B. From Interrupt to Application

A raised interrupt triggers a call to the kernel Interrupt
Service Routine (ISR). The time from an interrupt is raised,
and until the beginning of the execution of the ISR can vary,
e.g., due to other higher-priority or non-masked interrupts,
or the need to awaken the core executing the ISR from
suspension. Thus, this constitutes a potential jitter source.

Execution of the ISR is the first event, which can be
timestamped in software by the operating system. In Linux,
specifically, this is the irq_entry event. Then the ISR calls
the New API (NAPI) component, which attempts to reduce
the load induced by network activity on the CPU during high
load scenarios, by processing packets in bursts. Thus, this also
constitutes a potential jitter source.

NAPI calls the NIC driver, which fetches the packets from
RAM (where they had been placed using DMA by the NIC)
– and hands these off to the set of kernel components consti-
tuting the network stack, see figure 1, for further processing
(decoding received packet headers, extracting metadata corre-
sponding to the different network layers, etc). This processing
is subject to optimisations such as memory prefetching, cache
hits, etc., and therefore also constitutes a potential jitter source.

The processing step in the networking stack is to identify
if a given packet matches an open socket – i.e., if there’s an
application able to receive the payload of the packet. If there
is, and if the application process is sleeping, or is waiting
for data from this socket, it is awoken by the kernel – which
requires (i) a call to the scheduler and (ii) a context switch.
These two operations also constitute a potential jitter source.

C. Network-Independent Jitter

In addition to the jitter sources within the data-path itself
other sources of jitter — henceforth network-independent jitter
— exist. Essentially, those consists of events that temporarily
interrupt packet processing anywhere on the path discussed in
section II-B and illustrated in figure 1.

First, the Linux kernel’s scheduler can preempt running
processes. Suspending a running process from execution will
cause jitter, as the process will not be able to perform any
action during the time it is not scheduled.

Second, hardware interrupts take precedence over any other
kernel-space or userspace task. Thus, a non-masked interrupt
being raised will trigger the kernel ISR, interrupting any
other execution on the CPU core charged with handling that
interrupt. This can introduce jitter in any part of the stack –
noting that a high-priority interrupt being raised can delay the
execution of the ISR corresponding to a packet arrival.
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Figure 2. Abstract view of the analysed system

Completely transparent to the operating system, System
Management Interrupts (SMI) literally steal control of a CPU
from the OS, for doing low-level house-keeping tasks. With
no direct proof of their execution provided to the operating
system kernel, SMIs are both a potential jitter source and are
very hard to detect. One possible way to detect SMIs is to run
an infinite loop polling the current time and to detect gaps in
those measurements.

III. EXPERIMENTAL SETUP

To quantify the contribution of the potential jitter sources,
identified in section II, to the overall jitter of a VPF receiving
an ST2022-6 stream, each is studied in an isolated environ-
ment.

A. A Packet Sink VPF

In order to eliminate any application impact (such as
memory bandwidth consumption, CPU cache pollution, etc),
a “packet sink VPF” with minimal application behaviour is
used: on receipt of a packet, the application generates a
timestamp, drops the packet without inspecting the payload,
and computes the sequence of packet inter-arrival times ∆T .
The resulting time series can then be analysed to quantify the
jitter introduced by the server.

To differentiate between hardware-level and kernel-level
jitter, another source of timestamps is needed – at the ingress
of the kernel. For this purpose, the Linux kernel event tracing
subsystem1 is used, to record events at key steps of the packet
data path. In particular, this allows recording timestamps
for ISRs triggered by interrupts raised from the NIC, thus
providing a second time series related to packet arrivals.

B. Quantitative Scope

The test setup is illustrated in figure 2, where the stream at
the ingress of the server is assumed to be CBR. Understanding
to what extent this assumption is true is necessary, to be able
to interpret the recorded time-series meaningfully.

Thus the COTS server in figure 2 was substituted by
an ST2022-6 hardware network analyser2. The measurement
results are depicted in figure 3 and show a standard deviation

1https://www.kernel.org/doc/html/v4.17/trace/index.html
2Tektronix PRISM.

Figure 3. Histogram of the packet inter-arrival times at the ingress of the
server
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Figure 4. Interrupt and scheduling affinity. Involved cores are identified as
core 1, 2 and 3.

σ = 0.6µs in the distribution of the packet inter-arrival times.
The stream received in the experimental setup is, therefore,
CBR with a precision of 1 µs, and any sub-microsecond packet
delay variation observed, therefore, cannot be attributed to the
server hardware or software in this setup.

C. Hardware setup

The hardware setup is as follows, with reference to figure 2:
(a) A commercial SDI to ST2022 converter configured to

output an ST2022 stream encapsulating a 1080i 29.97
frames per second video test pattern is used as CBR
Generator.

(b) A server with two Intel(R) Xeon(R) CPU E5-2690 v4 is
used as the COTS server.

(c) An Intel(R) XL710 with a 40 Gbit/s optical interface is
used as the Ingress NIC.

(d) An interconnection between the packet generator and the
COTS server through a Cisco Nexus 9000 fully non-
blocking switch.

IV. EXPERIMENTS AND RESULTS

This section experimentally quantifies the contribution of
each source of jitter, as enumerated in section II. In the setup
of section III, all known sources of jitter eliminated, a baseline
is established. These sources are then restored one by one and
their impact is measured.

A. Baseline: Minimal Jitter

To eliminate external jitter sources, some of the available
CPU cores are isolated from the scheduler, and assigned
statically and exclusively to executing the (user-space) VPF,



Table I
AVAILABLE KERNEL OPTIONS TO REDUCE NETWORK-INDEPENDENT

JITTER

Kernel Option Description

nohz_full = <CPU LIST> For each CPU core in
<CPU LIST>, disables the
scheduler periodic tick when at
most one thread is runnable on it.

isolcpus = <CPU LIST> Prevents the CPU cores in
<CPU LIST> from running any
threads that were not explicitly
assigned to a core in the list.

rcu_nocbs = <CPU LIST> Offloads Read Copy Update (RCU)
callbacks from the CPU cores in
<CPU LIST> to a kernel thread
scheduled elsewhere.

rcu_nocb_poll Put the aforementioned kernel
thread in polling mode so as to
prevent RCU-offloaded CPU cores
from having to notify the CPU core
running that kernel thread.

idle=poll Forces a polling idle loop, which
reduces the time taken to wake up
an idle CPU core by making it
constantly busy.

processor.max_cstate=1
intel_idle.max_cstate=0

Disables all energy-saving modes
of the CPUs, further reducing the
wake-up penalty.

handling NIC interrupts, and handling other (non-NIC) inter-
rupts. This is done by way of using the Linux kernel options,
indicated in table I, as follows:
nohz_full=<CPU_LIST> isolcpus=<CPU_LIST>

↪→ rcu_nocbs=<CPU_LIST> rcu_nocb_poll

Moreover, as illustrated in figure 4a, the VPF is shielded from
all interrupts other than those raised by the receiving NIC, as
they are routed to a core different from the one running the
VPF.

To eliminate jitter at the hardware level i.e., between the
arrival of the packet and the execution of the interrupt handler,
the following is implemented. First, interrupt throttling is
disabled in the i40e kernel module — the NIC driver used
by the Intel XL710 — as follows:
ethtool -i <interface> -C adaptative-rx off
ethtool -i <interface> -C rx-usecs 0

Then, as illustrated in figure4a, the ISRs corresponding to the
NIC are shielded from the rest of the interrupts of the system as
these are routed to a CPU core different from the one executing
the NICs ISRs. For each interrupt number <INT> and target
CPU core <CPU>, rerouting interrupts is achieved as follows:
echo <CPU> > /proc/irq/<INT>/

↪→ smp_affinity_list

All energy saving options are disabled by adding the following
kernel options (described in table I):

processor.max_cstate=1 intel_idle.max_cstate
↪→ =0

With the same purpose, all CPU cores are configured to run
at their maximum frequency:
echo performance | sudo tee /sys/devices/

↪→ system/cpu/cpu*/cpufreq/
↪→ scaling_governor

In order to further reduce the CPU core wake-up penalty and
as illustrated by figure 4a, the NICs interrupts are routed to
the same CPU core as the one which the VPF is scheduled,
which spares one CPU core wake-up and one Inter-Processor
Interrupt (IPI), as the network stack (running on the same CPU
core as the ISR) will not need to communicate with another
CPU core when notifying the VPF.

Finally, the packet sink VPF used for the experiments and
described in section III is implemented in polling mode; by
calling recvfrom in a tight loop with the MSG_DONTWAIT
flag, the VPF never blocks which eliminate the call to the
scheduler evoked in section II.

B. Baseline: Experiments and Results

To differentiate the network-independent jitter defined in
section II-C from the jitter introduced by the processing
of incoming packets, a dummy program is implemented; it
consists of a loop, busy waiting for 7.41 µs and generating a
timestamp at each iteration. Therefore, this dummy program
has no interaction with the network stack and is able to provide
measurements of the network-independent jitter of the system.
In that setup, the sequence of timestamp should increase
by 7.41 µs at every iteration, unless the dummy program
is somehow interrupted. In that case, the time series ∆T
corresponding to the difference between a sampled timestamp
and the next one in the loop would show some spikes in the
same order of magnitude of the network-independent jitter.

Figure 5 shows the results obtained with the dummy pro-
gram running for one million iterations — corresponding to
7.41 s in the baseline configuration. Four spikes in the order of
15 µs can be observed, which gives an idea about the minimum
jitter that can be observed on such a system, independently
from the network stack.

In that same setup, figure 6b depicts the time series of
packet inter-arrival times as measured by the VPF, while
figure 6a shows the time series of the duration between two
consecutive ISR, this data being obtained with the kernel
tracing subsystem. Confronting both figures as well as figure 5
suggests that the jitter seen by the VPF is a mixture of (i)
network-independent jitter as shown by the similarity of the
spikes in figure 5 and figure 6b, and (ii) network jitter as shown
by the similarity of the 1 µs-wide noise around the 7.41 µs
average in figure 6a and 6b.

Figure 7a and figure 7b give finer-grained information about
the jitter introduced by the network stack itself i.e., from
ISR to the VPF. For example, there is a small but noticeable
amplification in the standard deviation between the distribution



Figure 5. Dummy program : 1M acquisitions
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Figure 6. Baseline system: time series

of ∆T at the ISR level and the distribution at the VPF-level
which corresponds to the jitter introduced by the network
stack. Moreover, the clustering and discrete patterns observed
in figure 7b can be plausibly explained by associating each
cluster to a succession of events that happened during the
packet processing. In other words, each cluster could corre-
spond to a possible code path.

Given the previous analysis of the baseline system, the
sources of jitter enumerated in section II are restored inde-
pendently so as to study their relative contribution.

C. ISR Start Of Execution

For multiple reasons, the elapsed time between interrupt and
ISR execution can vary, hence jitter. For example, the CPU
core handling the interrupt can be idle when the interrupt is
raised. This is evaluated by removing the idle=poll kernel
parameter. In this situation, figure 8 shows the apparition of
many spikes in the order of 15 µs when compared to figure 6a.

When interrupts are routed to a different CPU core than the
one on which the VPF is scheduled, it is plausible to assume
jitter reduction as ISRs are granted a dedicated core. Jitter
increase is also plausible because of the requirement for inter-
core synchronisation, which is a source of jitter i.e., because of
cache synchronisation or IPIs. Jitter increase is also possible
because the newly dedicated core is not doing anything else,
which means it is likely to be asleep, hence a wake-up-induced
jitter at ISR execution.

To discriminate between those hypotheses, three experi-
ments have been designed as follows: In the first experiment

(a) Tracing irq_entry (b) Timestamps in the VPF

Figure 7. Baseline system: Histogram of ∆T

Figure 8. System without idle=poll: tracing irq_entry

(figure 6a) NIC interrupts are routed to the same CPU core
as the one on which the VPF is scheduled, in the second
(figure 9a), NIC interrupts are re-routed to a different CPU
core, and on the third (figure 9b), NIC interrupts are re-routed
to a different CPU core, but the latter is kept busy by an
infinite loop. The CPU core configuration in those two last
experiments is illustrated in figure 4b. According to these
figures, the most likely hypothesis is that routing the interrupts
to a dedicated core slightly increases jitter in the absence of
another program on the same core, and significantly increases
it in the presence of an always runnable thread on that CPU
core (with frequent spikes in the order of 15 µs).

D. Linux Scheduler induced jitter

The straightforward approach to packet reception is to use
the recvfrom function exposed by the kernel, which in its
default behaviour, and if no packet is available in the socket
queue at the time of the call, blocks and triggers a context
switch and a call to the Linux scheduler. It will, therefore, need
to be rescheduled as soon as the network stack makes a packet
available to the socket, hence introducing additional jitter.
Even with the idle=poll kernel option, such an approach
shows spikes of up to 16µs (figure 10. Without the latter kernel
option, this blocking leads to even more jitter, showing spikes
of up to 60µs

As explained in section IV-A, that jitter can be eliminated
by receiving packets in polling mode.



(a) With infinite loop (b) Without infinite loop

Figure 9. System with re-routed interrupts: irq_entry

Figure 10. Measurements in blocking mode: VPF

E. Interrupt Throttling jitter

The major source of jitter studied in this paper originates in
the NIC’s interrupt moderation capacities. Those features pre-
vent the NIC from flooding a CPU core with interrupts at high
data rates by limiting the rate at which it triggers an interrupt.
But at low data rates, those features introduce unnecessary and
variable latency, as some interrupts are delayed, preventing the
CPU from processing the incoming packet unless the throttling
period has elapsed.

As described in [9], the Intel XL710 NIC, supports two
interrupt moderation features: Interrupt Throttling (ITR) and
Interrupt Rate Limiting (INTRL). ITR limits the instantaneous
interrupt rate, and guarantees a minimum gap between two
consecutive IRQs, whereas INTRL limits the average number
of interrupts per second on a given period.

On the vanilla 4.13 Linux kernel, those options were not
configurable at runtime and needed a kernel compilation in
order to be changed. The default behaviour is to use an
adaptive algorithm to change the ITR period depending on
the current input bandwidth. On the 4.17 kernel, ITR is
configurable using ethtool but INTRL still remains always-
on. The results described hereafter were obtained with a
custom kernel, specifically tweaked so as to disable INTRL.

The effects of ITR is quantified in this section by enabling
it on the 4.17 kernel and choosing an ITR period equal to
100 µs. This value is chosen because it is the same as the
default value on Linux 4.13. Results of this experiment are
depicted in figure 11.

Figure 11. Measurements with ITR activated and setting of TITR = 100µs

The 100 µs spikes caused by ITR can easily be observed
in this figure. These processing phases show nearly no jitter
and do not show any pattern change if a blocking socket is
used instead of a nonblocking polling loop. This last behaviour
can be explained, as even a recvfrom call in a blocking
setup will block once in every 100 µs as shown in figure 11.
Therefore, ITR hides all the other sources of latency studied
here.

V. CONCLUSION

As video production streams have a low tolerance for
jitter, characterising it on a COTS server running a general-
purpose OS is a crucial step, on the path towards building
VPFs for a software-based, all-IP, video production setup. A
detailed analysis of the packet reception path showed that
sources of jitter can be classified as either (i) hardware-
related such as ITR or the variable delay between the ISR
and the interrupt, (ii) network-stack related such as the impact
of the Linux scheduler, or (iii) network-independent such as
SMIs, unrelated interrupts, or any higher priority code stealing
cycles from the CPU. A quantitative study assessed that, in
the context of ST2022-6 reception, hardware-related effects
and especially ITR have the stronger impact, as they easily
hide the impact of the Linux scheduler. The experimental
methodology exposed in this paper consists of building a
baseline system with a minimal jitter (through system analysis
and experimental iterations) and reinstating each potential
source of jitter, to study its impact.

The jitter characterisation for ST2022-6 achieved here gives,
at the same time, results about the particular hardware setup
used in the performed experiments — allowing to better
understand the constraints a VPF needs to satisfy and the per-
formance it can get from the OS — and a generic methodology
to reproduce the study on any commodity platform, potentially
enabling the implementation of software-based VPFs in a
variety of environments.
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