Internet Engineering Task Force (IETF) U. Herberg
Request for Comments: 7939
Obsoletes: 6779 R. Cole
Category: Standards Track US Army CERDEC
ISSN: 2070-1721 I. Chakeres
 Delvin
 T. Clausen
 Ecole Polytechnique
 August 2016

Definition of Managed Objects for the Neighborhood Discovery Protocol

Abstract

This document replaces RFC 6779; it contains revisions and extensions to the original document. It defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes objects for configuring parameters of the Neighborhood Discovery Protocol (NHDP) process on a router. The extensions described in this document add objects and values to support the NHDP optimization specified in RFC 7466. The MIB module defined in this document, denoted NHDP-MIB, also reports state, performance information, and notifications about NHDP. This additional state and performance information is useful to troubleshoot problems and performance issues during neighbor discovery.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7939.
1. Introduction

This document defines a portion of the Management Information Base

Herberg, et al. Standards Track

RFC 7939 The NHDP-MIB August 2016
(MIB) for use with network management protocols in the Internet community. In particular, it describes objects for configuring parameters of the Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP) [RFC6130] process on a router. The MIB module defined in this document, denoted NHDP-MIB, also reports state, performance information, and notifications about NHDP. This additional state and performance information is useful to troubleshoot problems and performance issues during neighbor discovery.

1.1. Differences from RFC 6779

This document obsoletes [RFC6779], replacing that document as the specification of the MIB module for [RFC6130]. This revision to [RFC6779] is necessitated by the update to [RFC6130] specified in [RFC7466].

The MIB module for [RFC6130], specified in this document, captures the new information and states for each symmetric 2-hop neighbor, recorded in the Neighbor Information Base of a router and to be reflected in the appropriate tables, introduced by [RFC7466], specifically:

 o Addition of objects nhdpIlib2HopSetN2Lost and nhdpIfPerfCounterDiscontinuityTime.

 o Addition of extra value (notconsidered) to nhdp2HopNbrState.

 o Revised full compliance state.

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

Herberg, et al. Standards Track [Page 3]
RFC 7939 The NHDP-MIB August 2016

3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

4. Overview
[RFC6130] allows a router to discover and track topological information of routers up to two hops away by virtue of exchanging HELLO messages. This information is useful for routers running various routing and multicast flooding protocols developed within the IETF MANET Working Group.

4.1. Terms

The following definitions apply throughout this document:

- Notification Objects - triggers and associated notification messages allowing for asynchronous tracking of predefined events on the managed router.
- Configuration Objects - switches, tables, and objects that are initialized to default settings or set through the management interface defined by this MIB module.
- State Objects - automatically generated values that define the current operating state of the NHDP instance in the router.
- Performance Objects - automatically generated values that help to assess the performance of the NHDP instance on the router and the overall discovery performance within the MANET.

4.2. Notation

The same notations as defined in [RFC6130] are used throughout this document.

5. Structure of the MIB Module

This section presents the structure of the NHDP-MIB module. The MIB module is arranged into the following structure:

- nhdpNotifications - objects defining NHDP-MIB notifications.
- nhdpObjects - defining objects within this MIB module. The objects are arranged into the following groups:
 * Configuration Group - defining objects related to the configuration of the NHDP instance on the router.
 * State Group - defining objects that reflect the current state of the NHDP instance running on the router.
 * Performance Group - defining objects that are useful to a management station when characterizing the performance of NHDP on the router and in the MANET.
5.1. Notifications

This section describes the use of notifications and mechanisms to enhance the ability to manage NHDP routing domains.

5.1.1. Introduction

Notifications can be emitted by a router running an instance of this specification as a reaction to a specific event. This allows an observer of these events to efficiently determine the source of problems or significant changes of configuration or topology, instead of polling a possibly large number of routers.

5.1.2. Notification Generation

When an exception event occurs, the application notifies the local agent, which sends a notification to the appropriate SNMP management stations. The message includes the notification type and may include a list of notification-specific variables. Section 7 contains the notification definitions, which includes the variable lists. At least one IP address of the router that originates the notification is included in the variable list so that the source of the notification may be determined.

5.1.3. Limiting Frequency of Notifications

To limit the frequency of notifications, the following additional mechanisms are suggested, similar to those in [RFC4750].

5.1.3.1. Ignoring Initial Activity

The majority of critical events occur when NHDP is first enabled on a router, at which time, the symmetric neighbors and 2-hop neighbors of the router are discovered. During this initial period, a potential flood of notifications is unnecessary since the events are expected. To avoid unnecessary notifications, a router SHOULD NOT originate expected notifications until a predefined and administratively configured time interval has elapsed. It is RECOMMENDED that this time interval be at least 3 times nhdpHelloInterval so that symmetric neighbors are discovered. The suppression window for notifications is started when the nhdpIfStatus transitions from its default value of 'false(2)' to 'true(1)'.

5.1.3.2. Throttling Notifications

The mechanism for throttling the notifications is the same as in [RFC4750] (i.e., the number of transmitted notifications per time is
Appropriate values for the window time and upper bound are to be administratively configured and depend on the deployment of the MANET. If NHDP is deployed on a lossy, wireless medium, sending too many notifications in a short time interval may lead to collisions and dropped packets. In particular, in dense deployments of routers running NHDP (i.e., where each router has many neighbors), a change of the local topology may trigger many notifications at the same time. [RFC4750] recommends "7 traps with a window time of 10 seconds" as the upper bound. As NHDP is expected to be deployed in more lossy channels than OSPF, it is RECOMMENDED to choose a lower threshold for the number of notifications per time than that. Specifically, it is RECOMMENDED that the threshold value for the objects reflecting the change be set to a value of '10' and the DEFAULT values for these objects within the Notifications Group be set to this value. Further, a time window for the change objects is defined within this MIB module. If the number of occurrences exceeds the change threshold within the previous change window, then it is RECOMMENDED that the notification be sent. Furthermore, it is RECOMMENDED that the value for this window be set to at least 5 times the nhdpHelloInterval.

The following objects are used to define the thresholds and time windows for specific notifications defined in the NHDP-MIB module: nhdpNbrStateChangeThreshold, nhdpNbrStateChangeWindow, nhdp2HopNbrStateChangeThreshold, and nhdp2HopNbrStateChangeWindow.

5.1.3.3. One Notification per Event

Similar to the mechanism in [RFC4750], only one notification is sent per event.

5.2. The Configuration Group

The router running NHDP is configured with a set of controls. The authoritative list of configuration controls within the NHDP-MIB module are found within the MIB module itself. Generally, an attempt was made in developing the NHDP-MIB module to support all configuration objects defined in [RFC6130]. For all of the configuration parameters, the same constraints and default values of these parameters as defined in [RFC6130] are followed. Refer to [RFC5148] for guidance on setting jitter-related parameters, e.g., nhdpMaxJitter.

5.3. The State Group

The State Group reports current state information of a router running NHDP. The NHDP-MIB State Group tables were designed to contain the complete set of state information defined within the information bases specified in Sections 6, 7, and 8 of [RFC6130].
Two constructs, i.e., TEXTUAL-CONVENTIONS, are defined to support the tables in the State Group. NHDP stores and indexes information through sets of (dynamically defined) addresses, i.e., address sets. Within SMIPv2, it is not possible to index tables with variably defined address sets. Hence, these TEXTUAL-CONVENTIONS are defined to provide a local mapping between NHDP-managed address sets and SMIPv2 table indexing. These constructs are the NeighborIfIndex and NeighborRouterIndex. These are locally (to the router) defined, unique identifiers of virtual neighbors and neighbor interfaces. Due to the nature of NHDP, the local router may have identified distinct address sets but is not able to associate these as a single interface. Hence, two or more NeighborIfIndexes pointing to multiple distinct address sets may, in fact, be related to a common neighbor interface. This ambiguity may also hold with respect to the assignment of the NeighborRouterIndex. The local MIB agent is responsible for managing, aggregating, and retiring the defined indexes and for updating MIB tables using these indexes as the local router learns more about its neighbors' topologies. These constructs are used to define indexes to the appropriate State Group tables and to correlate table entries to address sets, virtual neighbor interfaces, and virtual neighbors within the MANET.

5.4. The Performance Group

The Performance Group reports values relevant to system performance. Unstable neighbors or 2-hop neighbors and frequent changes of sets can have a negative influence on the performance of NHDP. This MIB module defines several objects that can be polled in order to, e.g., calculate histories or monitor frequencies of changes. This may help an observer determining unusual topology changes or other changes that affect stability and reliability of the MANET.

5.5. Tables and Indexing

The NHDP-MIB module contains a number of tables that record data related to:

- the local router,
- a local MANET interface on the router,
- other routers that are one hop removed from the local router,
- interfaces on other routers that are one hop removed from the local router, and
- other routers that are two hops removed from the local router.

The NHDP-MIB module's tables are indexed via the following constructs:
- nhdpIfIndex - the IfIndex of the local router on which NHDP is configured.

- nhdpDiscIfIndex - a locally managed index representing a known interface on a neighboring router.

- nhdpDiscRouterIndex - a locally managed index representing an ID of a known neighboring router.

These tables and their indexing are:

- nhdpInterfaceTable - describes the configuration of the interfaces of this router. This table has INDEX { nhdpIfIndex }.

- nhdpLibLocalIfSetTable - records all network addresses that are defined as local interface network addresses on this router. This table has INDEX { nhdpLibLocalIfSetIndex }.

- nhdpLibRemovedIfAddrSetTable - records network addresses that were recently used as local interface network addresses on this router but have been removed. This table has INDEX { nhdpLibRemovedIfAddrSetIndex }.

- nhdpInterfaceStateTable - records state information related to specific interfaces of this router. This table has INDEX { nhdpIfIndex }.

- nhdpDiscIfSetTable - includes the nhdpDiscRouterIndex of the discovered router, the nhdpDiscIfIndex of the discovered interface, and the current set of addresses associated with this neighbor interface. This table has INDEX { nhdpDiscIfSetIndex }.

- nhdpLibLinkSetTable - for each local interface, records all links belonging to other routers that are, or recently were, 1-hop neighbors to this router. This table has INDEX { nhdpIfIndex, nhdpDiscIfIndex }.

- nhdpLib2HopSetTable - for each local interface, records network addresses (one at a time) of symmetric 2-hop neighbors and the symmetric links to symmetric 1-hop neighbors of this router through which these symmetric 2-hop neighbors can be reached. This table has INDEX { nhdpIfIndex, nhdpDiscIfIndex, nhdpLib2HopSetIpAddressType, nhdpLib2HopSetIpAddress }.

- nhdpNibNeighborSetTable - records all network addresses of each 1-hop neighbor to this router. This table has INDEX { nhdpDiscRouterIndex }.

- nhdpNibLostNeighborSetTable - records network addresses of other routers that were recently symmetric 1-hop neighbors to this router but are now advertised as lost. This table has INDEX
{ nhdpDiscRouterIndex }.

- nhdpInterfacePerfTable - records performance objects that are measured for each local NHDP interface on this router. This table has INDEX { nhdpIfIndex }.

- nhdpDiscIfSetPerfTable - records performance objects that are measured for each discovered interface of a neighbor of this router. This table has INDEX { nhdpDiscIfIndex }.

- nhdpDiscNeighborSetPerfTable - records performance objects that are measured for discovered neighbors of this router. This table has INDEX { nhdpDiscRouterIndex }.

- nhdpIib2HopSetPerfTable - records performance objects that are measured for discovered 2-hop neighbors of this router. This table has INDEX { nhdpDiscRouterIndex }.

6. Relationship to Other MIB Modules

This section specifies the relationship of the MIB module contained in this document to other standards, particularly to standards containing other MIB modules. MIB modules and specific definitions imported from MIB modules that SHOULD be implemented in conjunction with the MIB module contained within this document are identified in this section.

6.1. Relationship to the SNMPv2-MIB

The System Group in the SNMPv2-MIB module [RFC3418] is defined as being mandatory for all systems, and the objects apply to the entity as a whole. The System Group provides identification of the management entity and certain other system-wide data. The NHDP-MIB module does not duplicate those objects.

6.2. Relationship to Routing Protocol MIB Modules Relying on the NHDP-MIB Module

[RFC6130] allows routing protocols to rely on the neighborhood information that is discovered by means of HELLO message exchange. In order to allow for troubleshooting, fault isolation, and management of such routing protocols through a routing protocol MIB module, it may be desired to align the State Group tables of the NHDP-MIB module and the routing protocol MIB module. This is accomplished through the definition of two TEXTUAL-CONVENTIONS in the NHDP-MIB module: the NeighborIfIndex and the NeighborRouterIndex. These object types are used to develop indexes into common NHDP-MIB module and routing protocol State Group tables. These objects are locally significant but should be locally common to the NHDP-MIB module and the routing protocol MIB module implemented on a common networked router. This will allow for improved cross-referencing of information across the two MIB modules.
6.3. Relationship to the If-MIB

The nhdpInterfaceTable in this MIB module describes the configuration of the interfaces of this router that are intended to use MANET control protocols. As such, this table 'sparse augments' the ifTable [RFC2863] specifically when NHDP is to be configured to operate over this interface. The interface is identified by the ifIndex from the Interfaces Group defined in the Interfaces Group MIB module [RFC2863].

A conceptual row in the nhdpInterfaceTable exists if and only if either the row has been administratively created or there is an interface on the managed device that supports and runs NHDP. This implies that for each entry in the nhdpInterfaceTable, there is a corresponding entry in the Interface Table where nhdpIfIndex and ifIndex are equal. If that corresponding entry in the Interface Table is deleted, then the entry in nhdpInterfaceTable is automatically deleted, NHDP is disabled on this interface, and all configuration and state information related to this interface is to be removed from memory.

6.4. MIB Modules Required for IMPORTS

The following NHDP-MIB module IMPORTS objects from SNMPv2-SMI [RFC2578], SNMPv2-TC [RFC2579], SNMPv2-CONF [RFC2580], IF-MIB [RFC2863], SNMP-FRAMEWORK-MIB [RFC3411], INET-ADDRESS-MIB [RFC4001], and FLOAT-TC-MIB [RFC6340].

7. Definitions

This section contains the MIB module defined by the specification.

NHDP-MIB DEFINITIONS ::= BEGIN

-- This MIB module defines objects for the management of
-- NHDP (RFC 6130) - Mobile Ad Hoc Network (MANET)
-- Neighborhood Discovery Protocol (NHDP),
-- Clausen, T., Dearlove, C., and J. Dean, January 2011.

IMPORTS

MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
Counter32, Counter64, Integer32, Unsigned32, mib-2,
TimeTicks
FROM SNMPv2-SMI -- RFC 2578

TEXTUAL-CONVENTION, TruthValue, TimeStamp,
RowStatus
FROM SNMPv2-TC -- RFC 2579

MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
FROM SNMPv2-CONF -- STD 58
SnmpAdminString
FROM SNMP-FRAMEWORK-MIB -- RFC 3411

RFC 7939 The NHDP-MIB August 2016

InetAddressType, InetAddress, InetAddressPrefixLength
FROM INET-ADDRESS-MIB -- RFC 4001

InterfaceIndex
FROM IF-MIB -- RFC 2863

Float32TC
FROM FLOAT-TC-MIB -- RFC 6340

nhdpMIB MODULE-IDENTITY
LAST-UPDATED "201607120000Z" -- 12 July 2016
ORGANIZATION "IETF MANET Working Group"
CONTACT-INFO
"WG Email: manet@ietf.org
WG web page: https://datatracker.ietf.org/wg/manet

Editors: Ulrich Herberg
United States of America
ulrich@herberg.name
http://www.herberg.name/

Robert G. Cole
US Army CERDEC
Space and Terrestrial Communications
6010 Frankford Street
Aberdeen Proving Ground, Maryland 21005
United States of America
+1 443 395-8744
robert.g.cole@us.army.mil
http://www.cs.jhu.edu/~rgcole/

Ian D Chakeres
Delvin
Ellicott City, Maryland 21042
United States of America
ian.chakeres@gmail.com
http://www.ianchak.com/

Thomas Heide Clausen
Ecole Polytechnique
LIX
91128 Palaiseau Cedex
France
Email: T.Clausen@computer.org
URI: http://www.thomasclausen.org/"
DESCRIPTION
"This NHDP-MIB module is applicable to routers implementing the Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP) defined in RFC 6130.

Copyright (c) 2016 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info)."

-- revision
REVISION "201607120000Z" -- 12 July 2016
DESCRIPTION
"Updated version of this MIB module, including updates made to NHDP by RFC 7466, published as RFC 7939."
REVISION "201210221000Z" -- 22 October 2012
DESCRIPTION
"Initial version of this MIB module, published as RFC 6779."
::= { mib-2 213 }

--
-- Top-Level Components of this MIB Module
--
nhdpNotifications OBJECT IDENTIFIER ::= { nhdpMIB 0 }
nhdpObjects OBJECT IDENTIFIER ::= { nhdpMIB 1 }
nhdpConformance OBJECT IDENTIFIER ::= { nhdpMIB 2 }

--
-- TEXTUAL-CONVENTIONS
--
-- Two new TEXTUAL-CONVENTIONS have been defined in this MIB module for indexing into the following
tables and indexing into other tables in other MIB modules.
-- This was necessary because NHDP manages and indexes based upon dynamic address tuples, i.e.,
-- address sets, while SMI requires statically defined indexes for accessing its table rows.
-- The NeighborIfIndex defines a unique (to the local router)
-- index referencing a discovered virtual interface on another
-- neighbor within the MANET. The NeighborRouterIndex defines a
-- unique (to the local router) index referencing a discovered
-- virtual neighbor within the MANET.
--
-- Due to the nature of NHDP,
-- different indexes may be related to common neighbor
-- interfaces or common neighbor routers, but the information
-- obtained through NHDP has not allowed the local router
-- to relate these virtual objects (i.e., interfaces or routers)
-- at this point in time. As more topology information
-- is gathered by the local router, it may associate
-- virtual interfaces or routers and collapse these
-- indexes appropriately.

-- Multiple addresses can be associated with a
-- given NeighborIfIndex. Each NeighborIfIndex is
-- associated with a NeighborRouterIndex. Throughout
-- the nhdpStateObjGroup, the
-- NeighborIfIndex and the NeighborRouterIndex are used
-- to define the set of IP Addresses related to a virtual
-- neighbor interface or virtual neighbor under discussion.

NeighborIfIndex ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"An arbitrary, locally unique identifier associated with a
virtual interface of a discovered NHDP neighbor.
Due to the nature of NHDP, the local router
may not know if two distinct addresses belong to the
same interface of a neighbor or to two different
interfaces. As the local router gains more
knowledge of its neighbors, its local view may change, and
this table will be updated to reflect the local router's
current understanding, associating address sets to neighbor
interfaces. The local router identifies a virtual neighbor
interface through the receipt of address lists advertised
through an NHDP HELLO message.

All objects of type NeighborIfIndex are assigned by the agent
out of a common number space.

The value for each discovered virtual neighbor
interface may not remain constant from
one re-initialization of the entity's network management
agent to the next re-initialization. If the
local router gains information associating two virtual
interfaces on a neighbor as a common interface,
then the agent MUST aggregate the two address sets to
a single index chosen from the set of aggregated indexes,
and it MUST update all tables in this MIB module that are indexed by indexes of type NeighborIfIndex. It MAY then reuse freed index values following the next agent restart.

The specific value is meaningful only within a given SNMP entity.

SYNTAX Unsigned32 (1..2147483647)

NeighborRouterIndex ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"An arbitrary, locally unique identifier associated with a virtual discovered neighbor (one or two hop). Due to the nature of NHDP, the local router may identify multiple virtual neighbors that, in fact, are one and the same. Neighbors that are two hops away with more than one advertised address will exhibit this behavior. As the local router's knowledge of its neighbors' topology increases, the local router will be able to associate multiple virtual neighbor indexes into a single virtual neighbor index chosen from the set of aggregated indexes; it MUST update all tables in this MIB module indexed by these indexes, and it MAY reuse the freed indexes following the next agent re-initialization.

All objects of type NeighborRouterIndex are assigned by the agent out of a common number space.

The NeighborRouterIndex defines a discovered NHDP peer virtual neighbor of the local router.

The value for each discovered virtual neighbor index MUST remain constant at least from one re-initialization of the entity's network management agent to the next re-initialization, except if an application is deleted and re-created.

The specific value is meaningful only within a given SNMP entity. A NeighborRouterIndex value MUST NOT be reused until the next agent restart."

SYNTAX Unsigned32 (1..2147483647)
nhdpConfigurationObjGrp OBJECT IDENTIFIER ::= { nhdpObjects 1 }

nhdpInterfaceTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpInterfaceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The nhdpInterfaceTable describes the
configuration of the interfaces of this router
that are intended to use MANET control protocols.
As such, this table 'sparse augments' the ifTable
specifically when NHDP is to be configured to
operate over this interface. The interface is
identified by the ifIndex from the Interfaces
Group defined in the Interfaces Group MIB module.

A conceptual row in this table exists if and only
if the row has been administratively created
or there is an interface on the managed device
that supports and runs NHDP.

A row can be administratively created by setting
rowStatus to 'createAndGo' or 'createAndWait'.
During the row creation, objects having associated
DEFVAL clauses are automatically defined by
the agent if not explicitly administratively defined.

For each entry in the nhdpInterfaceTable, there is a
corresponding entry in the Interface Table where
nhdpIfIndex and ifIndex are equal. If that corresponding
entry in the Interface Table is deleted, then the entry in
the nhdpInterfaceTable is automatically deleted,
DESCRIPTION

"The nhdpInterfaceEntry describes one NHDP local interface configuration as indexed by its ifIndex as defined in the Standard MIB II Interface Table (RFC 2863).

The objects in this table are persistent, and when written, the device SHOULD save the change to nonvolatile storage. For further information on the storage behavior for these objects, refer to the description for the nhdpIfRowStatus object."

INDEX { nhdpIfIndex }
::= { nhdpInterfaceTable 1 }

NhdpInterfaceEntry ::= SEQUENCE {
 nhdpIfIndex InterfaceIndex,
nhdpIfName SnmpAdminString,
nhdpIfStatus TruthValue,
nhdpHelloInterval Unsigned32,
nhdpHelloMinInterval Unsigned32,
nhdpRefreshInterval Unsigned32,
nhdpLHoldTime Unsigned32,
nhdpHHoldTime Unsigned32,
nhdpHystAcceptQuality Float32TC,
nhdpHystRejectQuality Float32TC,
nhdpInitialQuality Float32TC,
nhdpInitialPending TruthValue,
nhdpHpMaxJitter Unsigned32,
nhdpHtMaxJitter Unsigned32,
nhdpIfRowStatus RowStatus
}

nhdpIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This value MUST correspond to an ifIndex referring
to a valid entry in the Interfaces Table."
REFERENCE
"RFC 2863 - The Interfaces Group MIB, McCloghrie, K.,
and F. Kastenholtz, June 2000"
::= { nhdpInterfaceEntry 1 }

nhdpIfName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The textual name of the interface. The value of this
object SHOULD be the name of the interface as assigned by
the local device. This can be a text-name, such as 'le0'
or a simple port number, such as '1',
depending on the interface-naming syntax of the device.

If there is no local name or this object is otherwise not
applicable, then this object contains a zero-length string."
::= { nhdpInterfaceEntry 2 }

nhdpIfStatus OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"nhdpIfStatus indicates whether this interface is
currently running NHDP. A value of 'true(1)' indicates
that NHDP is running on this interface.
A value of 'false(2)' indicates that NHDP is not
currently running on this interface. This corresponds
to the I_manet parameter in the Local Interface Set
of NHDP."
DEFVAL { false }
::= { nhdpInterfaceEntry 3 }

--
-- Interface Parameters - Message Intervals
--

nhdpHelloInterval OBJECT-TYPE
SYNTAX Unsigned32
UNITS "milliseconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"nhdpHelloInterval corresponds to HELLO_INTERVAL of NHDP and represents the maximum time between the transmission of two successive HELLO messages on this MANET interface.

Guidance for setting this object may be found in Section 5 of the NHDP specification (RFC 6130), which indicates that:
 o nhdpHelloInterval > 0
 o nhdpHelloInterval >= nhdpHelloMinInterval"

REFERENCE
"Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

DEFVAL { 2000 }
::= { nhdpInterfaceEntry 4 }

nhdpHelloMinInterval OBJECT-TYPE
SYNTAX Unsigned32
UNITS "milliseconds"
MAX-ACCESS read-create
STATUS current

DESCRIPTION
"nhdpHelloMinInterval corresponds to HELLO_MIN_INTERVAL of NHDP and represents the minimum interval between transmission of two successive HELLO messages on this MANET interface.

Guidance for setting this object may be found in Section 5 of the NHDP specification (RFC 6130), which indicates that:
 o nhdpHelloMinInterval <= nhdpHelloInterval"

REFERENCE
"Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

DEFVAL { 500 }
::= { nhdpInterfaceEntry 5 }

nhdpRefreshInterval OBJECT-TYPE
SYNTAX Unsigned32
UNITS "milliseconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"nhdpRefreshInterval corresponds to REFRESH_INTERVAL of NHDP and represents the
maximum interval between advertisements of each 1-hop neighbor network address and its status. Each advertisement is in a HELLO message on this MANET interface.

Guidance for setting this object may be found in Section 5 of the NHDP specification (RFC 6130), which indicates that:

- nhdpRefreshInterval >= nhdpHelloInterval

REFERENCE
"Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
DEFVAL { 2000 }
::= { nhdpInterfaceEntry 6 }

--
-- Interface Parameters - Information Validity times
--

nhdpLHoldTime OBJECT-TYPE
SYNTAX Unsigned32
UNITS "milliseconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"nhdpLHoldTime corresponds to L_HOLD_TIME of NHDP and represents the period of advertisement, on this MANET interface, of former 1-hop neighbor network addresses as lost in HELLO messages, allowing recipients of these HELLO messages to accelerate removal of this information from their Link Sets.

Guidance for setting this object may be found in Section 5 of the NHDP specification (RFC 6130), which indicates that it should be assigned a value significantly greater than the refresh interval held by nhdpRefreshInterval."
REFERENCE
"Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
DEFVAL { 6000 }
::= { nhdpInterfaceEntry 7 }

nhdpHHoldTime OBJECT-TYPE
SYNTAX Unsigned32
UNITS "milliseconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION

"nhdpHHoldTime corresponds to H_HOLD_TIME of NHDP and is used as the value in the VALIDITY_TIME Message TLV included in all HELLO messages on this MANET interface. It is then used by each router receiving such a HELLO message to indicate the validity of the information taken from that HELLO message and recorded in the receiving router's Information Bases.

Guidance for setting this object may be found in Section 5 of the NHDP specification (RFC 6130), which indicates that it should be assigned a value significantly greater than the refresh interval held by nhdpRefreshInterval and must be representable as described in RFC 5497."

REFERENCE

"RFC 5497 - Representing Multi-Value Time in Mobile Ad Hoc Networks (MANETs), Clausen, T., and C. Dearlove, March 2009.

Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

DEFVAL { 6000 }
::= { nhdpInterfaceEntry 8 }

-- Interface Parameters - Link Quality

nhdpHystAcceptQuality OBJECT-TYPE
SYNTAX Float32TC
MAX-ACCESS read-create
STATUS current
DESCRIPTION

"nhdpHystAcceptQuality corresponds to HYST_ACCEPT of NHDP and represents the link quality threshold at or above which a link becomes usable, if it was not already so.

Guidance for setting this object may be found in Section 5 of the NHDP specification (RFC 6130), which indicates that:
 o 0 <= nhdpHystRejectQuality
 <= nhdpHystAcceptQuality <= 1.0

The default value for this object is 1.0. According to RFC 6340:
Since these textual conventions are defined in terms of the OCTET STRING type, the SMI's mechanisms for formally setting range constraints are not available."
MIB designers using these textual conventions will need to use DESCRIPTION clauses to spell out any applicable range constraints beyond those implied by the underlying IEEE types.

Therefore, this object does not have a DEFVAL clause.

REFERENCE

"Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP),
Clausen, T., Dearlove, C., and J. Dean, April 2011"

-- DEFVAL { 1.0 } see DESCRIPTION

Herberg, et al. Standards Track [Page 22]
RFC 7939 The NHDP-MIB August 2016

::= { nhdpInterfaceEntry 9 }

nhdpHystRejectQuality OBJECT-TYPE
SYNTAX Float32TC
MAX-ACCESS read-create
STATUS current
DESCRIPTION

"nhdpHystRejectQuality corresponds to HYST_REJECT of NHDP and represents the link quality threshold below which a link becomes unusable, if it was not already so.

Guidance for setting this object may be found in Section 5 of the NHDP specification (RFC 6130), which indicates that:

\[
0 \leq \text{nhdpHystRejectQuality} \leq \text{nhdpHystAcceptQuality} \leq 1.0
\]

The default value for this object is 0.0. According to RFC 6340:

Since these textual conventions are defined in terms of the OCTET STRING type, the SMI's mechanisms for formally setting range constraints are not available. MIB designers using these textual conventions will need to use DESCRIPTION clauses to spell out any applicable range constraints beyond those implied by the underlying IEEE types.

Therefore, this object does not have a DEFVAL clause.

REFERENCE

"Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP),
Clausen, T., Dearlove, C., and J. Dean, April 2011"

-- DEFVAL { 0.0 } see DESCRIPTION

::= { nhdpInterfaceEntry 10 }

nhdpInitialQuality OBJECT-TYPE
SYNTAX Float32TC
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"nhdpInitialQuality corresponds to INITIAL_QUALITY of NHDP and represents the initial quality of a newly identified link.

Guidance for setting this object may be found in Section 5 of the NHDP specification (RFC 6130),

Herberg, et al. Standards Track [Page 23]

RFC 7939 The NHDP-MIB August 2016

which indicates that:
 o 0 <= nhdpInitialQuality <= 1.0

The default value for this object is 1.0. According to RFC 6340:
Since these textual conventions are defined in terms of the OCTET STRING type, the SMI's mechanisms for formally setting range constraints are not available. MIB designers using these textual conventions will need to use DESCRIPTION clauses to spell out any applicable range constraints beyond those implied by the underlying IEEE types.
Therefore, this object does not have a DEFVAL clause."
REFERENCE
"Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

-- DEFVAL { 1.0 } see DESCRIPTION
::= { nhdpInterfaceEntry 11 }

nhdpInitialPending OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"nhdpInitialPending corresponds to INITIAL_PENDING of NHDP. If the value of this object is 'true(1)', then a newly identified link is considered pending and is not usable until the link quality has reached or exceeded the nhdpHystAcceptQuality threshold.

Guidance for setting this object may be found in Section 5 of the NHDP specification (RFC 6130), which indicates that:
 o If nhdpInitialQuality >= nhdpHystAcceptQuality, then nhdpInitialPending := false(2).
 o If nhdpInitialQuality < nhdpHystRejectQuality, then nhdpInitialPending := true(1).

REFERENCE
"Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

DEFVAL { false }
::= { nhdpInterfaceEntry 12 }

-- Interface Parameters - Jitter

--

nhdpHpMaxJitter OBJECT-TYPE
SYNTAX Unsigned32
UNITS "milliseconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION

"nhdpHpMaxJitter corresponds to
HP_MAXJITTER of NHDP and represents the
value of MAXJITTER used in RFC 5148 for
periodically generated HELLO messages on
this MANET interface.

Guidance for setting this object may be found
in Section 5 of RFC 5148, which indicates that:
 o nhdpHpMaxJitter <= nhdpHelloInterval / 2
 o nhdpHpMaxJitter should not be greater
 than nhdpHelloInterval / 4
 o If nhdpMinHelloInterval > 0, then
 nhdpHpMaxJitter <= nhdpHelloMinInterval; and
 nhdpHpMaxJitter should not be greater than
 nhdpHelloMinInterval / 2"

REFERENCE

"Section 5 of RFC 5148 - Jitter Considerations in
Mobile Ad Hoc Networks (MANETs),
Clausen, T., Dearlove, C., and B. Adamson, February 2008"

DEFVAL { 500 }
::= { nhdpInterfaceEntry 13 }

nhdpHtMaxJitter OBJECT-TYPE
SYNTAX Unsigned32
UNITS "milliseconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION

"nhdpHtMaxJitter corresponds to
HT_MAXJITTER of NHDP and represents the
value of MAXJITTER used in RFC 5148 for
externally triggered HELLO messages on this
MANET interface.

Guidance for setting this object may be found
in Section 5 of RFC 5148, which indicates that:
 o nhdpHtMaxJitter <= nhdpHelloInterval / 2
o nhdpHtMaxJitter should not be greater
 than nhdpHelloInterval / 4
o If nhdpMinHelloInterval > 0, then
 nhdpHtMaxJitter <= nhdpHelloMinInterval; and
 nhdpHtMaxJitter should not be greater than
 nhdpHelloMinInterval / 2"

REFERENCE
"Section 5 of RFC 5148 - Jitter Considerations in
Mobile Ad Hoc Networks (MANETs),
Clausen, T., Dearlove, C., and B. Adamson, February 2008"

DEFVAL { 500 }
::= { nhdpInterfaceEntry 14 }

nhdpIfRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object permits management of the table
by facilitating actions such as row creation,
construction, and destruction. The value of
this object has no effect on whether other
objects in this conceptual row can be
modified.

An entry may not exist in the 'active(1)' state unless all
objects in the entry have a defined appropriate value. For
objects with DEFVAL clauses, the management station
does not need to specify the value of this object in order
for the row to transit to the 'active(1)' state; the default
value for this object is used. For objects that do not
have DEFVAL clauses, the value of this object prior
to this row transitioning to the 'active(1)' state MUST be
administratively specified.

When this object transitions to 'active(1)', all objects
in this row SHOULD be written to nonvolatile (stable)
storage. Read-create objects in this row MAY be modified.
When an object in a row with nhdpIfRowStatus of 'active(1)'
is changed, then the updated value MUST be reflected in NHDP,
and this new object value MUST be written to nonvolatile
storage.

If the value of this object is not equal to 'active(1)',
all associated entries in the nhdpLibLocalIfSetTable,
nhdpInterfaceStateTable, nhdpLibLinkSetTable, and
nhdpInterfacePerfTable MUST be deleted."
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

DEFVAL { active }
::= { nhdpInterfaceEntry 15 }

--
-- Router Parameters - Information Validity Time
--

nhdpNHoldTime OBJECT-TYPE
SYNTAX Unsigned32
UNITS "millisseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"nhdpNHoldTime corresponds to N_HOLD_TIME of NHDP and is used as the period during which former 1-hop neighbor network addresses are advertised as lost in HELLO messages, allowing recipients of these HELLO messages to accelerate removal of this information from their 2-Hop Sets.

This object is persistent, and when written, the entity SHOULD save the change to nonvolatile storage."

REFERENCE

"Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

DEFVAL { 6000 }
::= { nhdpConfigurationObjGrp 2 }

nhdpIHoldTime OBJECT-TYPE
SYNTAX Unsigned32
UNITS "millisseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"nhdpIHoldTime corresponds to I_HOLD_TIME of NHDP and represents the period for which a recently used local interface network address is recorded.

This object is persistent, and when written, the entity SHOULD save the change to nonvolatile storage."

REFERENCE

"Section 5 on Protocol Parameters and Constraints of RFC 6130 - Mobile Ad Hoc Network
(MANET) Neighborhood Discovery Protocol (NHDP),
Clausen, T., Dearlove, C., and J. Dean, April 2011
DEFVAL { 6000 }
::= { nhdpConfigurationObjGrp 3 }

-- A router's Local Information Base (LIB)
--
-- Local Interface Set Table
--

nhdpLibLocalIfSetTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpLibLocalIfSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A router's Local Interface Set table records all
network addresses that are defined as local
MANET interface network addresses.
As such, this table 'spare augments' the
nhdpInterfaceTable when network addresses are
being defined for the interfaces existing within
the nhdpInterfaceTable. The local interface
is defined by the nhdpIfIndex.

The Local Interface Set consists of Local Interface
Address Tuples per MANET interface and their prefix
lengths (in order to determine the network addresses
related to the interface).

A conceptual row in this table exists if and only
if one has been administratively created. This can be done
by setting rowStatus to 'createAndGo' or 'createAndWait'.

Further guidance on the addition or removal of
local addresses and network addresses is found
in Section 9 of RFC 6130."
REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
::= { nhdpConfigurationObjGrp 4 }

NhdpLibLocalIfSetEntry OBJECT-TYPE
SYNTAX NhdpLibLocalIfSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A router's Local Interface Set consists
of Local Interface Tuples for each network
interface.

The objects in this table are persistent, and when
written, the device SHOULD save the change to

https://www.rfc-editor.org/rfc/rfc7939.txt
nonvolatile storage. For further information on the storage behavior for these objects, refer to the description for the nhdpLibLocalIfSetRowStatus object."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

INDEX { nhdpLibLocalIfSetIndex }
::= { nhdpLibLocalIfSetTable 1 }

NhdpLibLocalIfSetEntry ::= SEQUENCE {
 nhdpLibLocalIfSetIndex
 Integer32,
 nhdpLibLocalIfSetIfIndex
 InterfaceIndex,
 nhdpLibLocalIfSetIpAddrType
 InetAddressType,
 nhdpLibLocalIfSetIpAddr
 InetAddress,
 nhdpLibLocalIfSetIpAddrPrefixLen
 InetAddressPrefixLength,
 nhdpLibLocalIfSetRowStatus
 RowStatus
}

NhdpLibLocalIfSetIndex OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The index for this table. Necessary because multiple addresses may be associated with a given nhdpIfIndex."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
::= { nhdpLibLocalIfSetEntry 1 }

NhdpLibLocalIfSetIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Specifies the local nhdpIfIndex for which this IP address was added."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove,
::= { nhdpLibLocalIfSetEntry 2 }

nhdpLibLocalIfSetIpAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The type of the nhdpLibLocalIfSetIpAddr
 in the InetAddress MIB (RFC 4001).

Only the values 'ipv4(1)' and 'ipv6(2)' are supported."
REFERENCE
 "RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
 Discovery Protocol (NHDP), Clausen, T., Dearlove,
 C., and J. Dean, April 2011"
::= { nhdpLibLocalIfSetEntry 3 }

nhdpLibLocalIfSetIpAddr OBJECT-TYPE
SYNTAX InetAddress (SIZE(4|16))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "nhdpLibLocalIfSetIpAddr is an
 address of an interface of
 this router.

This object is interpreted according to
the setting of nhdpLibLocalIfSetIpAddrType."

::= { nhdpLibLocalIfSetEntry 4 }

nhdpLibLocalIfSetIpAddrPrefixLen OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "Indicates the number of leading one bits that
 form the mask. The mask is logically ANDed
 to the nhdpLibLocalIfSetIpAddr to determine
 the address prefix. A row match is true
 if the address used as an index falls within
 the network address range defined by the
 address prefix."
REFERENCE
 "RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
 Discovery Protocol (NHDP), Clausen, T., Dearlove,
This object permits management of the table by facilitating actions such as row creation, construction, and destruction. The value of this object has no effect on whether other objects in this conceptual row can be modified.

An entry may not exist in the 'active(1)' state unless all read-create objects in the entry have a defined appropriate value. As no objects in this table have DEFVAL clauses, the management station MUST specify the values of all read-create objects prior to this row transitioning to the 'active(1)' state.

When this object transitions to 'active(1)', all objects in this row SHOULD be written to nonvolatile (stable) storage. Read-create objects in this row MAY be modified. When an object in a row with nhdpIfRowStatus of 'active(1)' is changed, then the updated value MUST be reflected in NHDP.
per network address."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpConfigurationObjGrp 5 }

NhdpLibRemovedIfAddrSetEntry OBJECT-TYPE
SYNTAX NhdpLibRemovedIfAddrSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A router's Removed Interface Address Set consists of Removed Interface Address Tuples, one per network address:

(IR_local_iface_addr, IR_time)

The association between these addresses and the router's Interface is found in RFC 4293 (ipAddressTable)"

REFERENCE
RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
INDEX { nhdpLibRemovedIfAddrSetIndex }
::= { nhdpLibRemovedIfAddrSetTable 1 }

NhdpLibRemovedIfAddrSetEntry ::= SEQUENCE {
 nhdpLibRemovedIfAddrSetIndex Integer32,
 nhdpLibRemovedIfAddrSetIpAddrType InetAddressType,
 nhdpLibRemovedIfAddrSetIpAddr InetAddress,
 nhdpLibRemovedIfAddrSetIpAddrPrefixLen InetAddressPrefixLength,
 nhdpLibRemovedIfAddrSetIfIndex InterfaceIndex,
 nhdpLibRemovedIfAddrSetIRTime TimeStamp
}

NhdpLibRemovedIfAddrSetIndex OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The index for this table. Necessary because multiple addresses may be associated with a given nhdpIfIndex."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpLibRemovedIfAddrSetEntry 1 }

nhdpLibRemovedIfAddrSetIpAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The type of the nhdpLibRemovedIfAddrSetIpAddr in the InetAddress MIB (RFC 4001)."

Only the values 'ipv4(1)' and 'ipv6(2)' are supported."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpLibRemovedIfAddrSetEntry 2 }

nhdpLibRemovedIfAddrSetIpAddr OBJECT-TYPE
SYNTAX InetAddress (SIZE(4|16))
MAX-ACCESS read-only
STATUS current
DESCRIPTION "nhdpLibRemovedIfAddrSetIpAddr is a recently used address of an interface of this router."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpLibRemovedIfAddrSetEntry 3 }

nhdpLibRemovedIfAddrSetIpAddrPrefixLen OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Indicates the number of leading one bits that form the mask. The mask is logically ANDED to the nhdpLibRemovedIfAddrSetIpAddr to determine the address prefix. A row match is true if the address used as an index falls within the network address range defined by the address prefix."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
nhdpLibRemovedIfAddrSetIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Specifies the local IfIndex from which this
IP address was recently removed."

nhdpLibRemovedIfAddrSetIRTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"nhdpLibRemovedIfAddrSetIRTime specifies the value
of sysUpTime when this entry should expire and be
removed from the nhdpLibRemovedIfAddrSetTable."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"

nhdpStateObjGrp OBJECT IDENTIFIER ::= { nhdpObjects 2 }

nhdpUpTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time the current NHDP
process was initialized."

nhdpInterfaceStateTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpInterfaceStateEntry
MAX-ACCESS not-accessible
nhdpInterfaceStateTable lists state information related to specific interfaces of this router. The value of nhdpIfIndex is an ifIndex from the Interfaces Group defined in the Interfaces Group MIB.

The objects in this table are persistent, and when written, the entity SHOULD save the change to nonvolatile storage.

Reference

"RFC 2863 - The Interfaces Group MIB, McCloghrie, K., and F. Kastenholtz, June 2000"

::= { nhdpStateObjGrp 2 }

nhdpInterfaceStateEntry OBJECT-TYPE
SYNTAX NhdpInterfaceStateEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"nhdpInterfaceStateEntry describes one NHDP local interface state as indexed by its nhdpIfIndex."
INDEX { nhdpIfIndex }
::= { nhdpInterfaceStateTable 1 }

NhdpInterfaceStateEntry ::= SEQUENCE {
 nhdpIfStateUpTime
 TimeStamp
}

nhdpIfStateUpTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of the sysUpTime when NHDP was last initialized on this MANET interface."
::= { nhdpInterfaceStateEntry 1 }

--
-- This table allows for the mapping between discovered remote interfaces and routers and their addresses.
--

nhdpDiscIfSetTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpDiscIfSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A router's set of discovered interfaces on neighboring routers."

REFERENCE

"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpStateObjGrp 3 }

NhdpDiscIfSetEntry OBJECT-TYPE
SYNTAX NhdpDiscIfSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The entries include the nhdpDiscRouterIndex of the discovered router, the nhdpDiscIfIndex of the discovered interface, and the current set of addresses associated with this neighbor interface. The nhdpDiscIfIndex uniquely identifies the remote interface address sets through this table. It does not need to be unique across the MANET but MUST be locally unique within this router."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

INDEX { nhdpDiscIfSetIndex }

::= { nhdpDiscIfSetTable 1 }

NhdpDiscIfSetTable

NhdpDiscIfSetEntry ::=
SEQUENCE {
 nhdpDiscIfSetIndex
 INTEGER32,
 nhdpDiscIfIndex
 NeighborIfIndex,
 nhdpDiscRouterIndex
 NeighborRouterIndex,
 nhdpDiscIfSetIpAddrType
 InetAddressType,
 nhdpDiscIfSetIpAddr
 InetAddress,
 nhdpDiscIfSetIpAddrPrefixLen
 InetAddressPrefixLength
}

NhdpDiscIfSetIndex OBJECT-TYPE
SYNTAX INTEGER32 (0..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The index for this table. Necessary because multiple addresses may be associated with a given nhdpDiscIfIndex."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpDiscIfSetEntry 1 }

nhdpDiscIfIndex OBJECT-TYPE
SYNTAX NeighborIfIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The NHDP interface index (locally created) of a neighbor’s interface. Used for cross-indexing into other NHDP tables and other MIB modules."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpDiscIfSetEntry 2 }

nhdpDiscRouterIndex OBJECT-TYPE
SYNTAX NeighborRouterIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The NHDP neighbor index (locally created) of a neighboring router. Used for cross-indexing into other NHDP tables and other MIB modules."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpDiscIfSetEntry 3 }

nhdpDiscIfSetIpAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of the nhdpDiscIfSetIpAddr in the InetAddress MIB (RFC 4001)."
Only the values 'ipv4(1)' and 'ipv6(2)' are supported.

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpDiscIfSetEntry 4 }

nhdpDiscIfSetIpAddr OBJECT-TYPE
SYNTAX InetAddress (SIZE(4|16))
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"The nhdpDiscIfSetIpAddr is a recently used address of a neighbor of this router."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpDiscIfSetEntry 5 }

nhdpDiscIfSetIpAddrPrefixLen OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"Indicates the number of leading one bits that form the mask. The mask is logically ANDed to the nhdpDiscIfSetIpAddr to determine the address prefix. A row match is true if the address used as an index falls within the network address range defined by the address prefix."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpDiscIfSetEntry 6 }

-- Interface Information Base (IIB)

--

-- Link Set

--
"A Link Set of an interface records all links from other routers that are, or recently were, 1-hop neighbors."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpStateObjGrp 4 }

nhdpIibLinkSetEntry OBJECT-TYPE
SYNTAX NhdpIibLinkSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A Link Set consists of Link Tuples, each representing a single link indexed by the local and remote interface pair:

(L_neighbor_iface_addr_list, L_HEARD_time, L_SYM_time, L_quality, L_pending, L_lost, L_time).

The local interface is indexed via the nhdpIfIndex. The 1-hop interface is indexed via the nhdpDiscIfIndex. There SHOULD be an entry in this table for each local interface and associated 1-hop neighbor reachable on this local interface.

Note that L_quality is not included in the entries below, because updates may be required too frequently."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

INDEX { nhdpIfIndex,
 nhdpDiscIfIndex }

::= { nhdpIibLinkSetTable 1 }

NhdpIibLinkSetEntry ::=
 SEQUENCE {
 nhdpIibLinkSetLHeardTime
 TimeStamp,
 nhdpIibLinkSetLSymTime
 TimeStamp,
 nhdpIibLinkSetLPending
 TruthValue,
 nhdpIibLinkSetLLost
 TruthValue,
nhdpIibLinkSetLTime
 TimeStamp

}

nhdpIibLinkSetLHeardTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "nhdpIibLinkSetLHeardTime corresponds
to L_HEARD_time of NHDP and represents the
time up to which the MANET interface of the
1-hop neighbor would be considered heard if
not considering link quality."
REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
::= { nhdpIibLinkSetEntry 1 }

nhdpIibLinkSetLSymTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "nhdpIibLinkSetLSymTime corresponds
to L_SYM_time of NHDP and represents the
time up to which the link to the 1-hop neighbor
would be considered symmetric if not considering
link quality."
REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
::= { nhdpIibLinkSetEntry 2 }

nhdpIibLinkSetLPending OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "nhdpIibLinkSetLPending corresponds
to L_pending of NHDP and is a boolean flag,
describing if a link is considered pending
(i.e., a candidate, but not yet established,
link)."
REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
::= { nhdpIibLinkSetEntry 3 }

https://www.rfc-editor.org/rfc/rfc7939.txt
nhdpIibLinkSetLLost OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION

\"nhdpIibLinkSetLLost corresponds to L_lost of NHDP and is a boolean flag, describing if a link is considered lost due to low link quality.\"
REFERENCE

\"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011\"
::= { nhdpIibLinkSetEntry 4 }

nhdpIibLinkSetLTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

\"nhdpIibLinkSetLTime specifies the value of sysUpTime when this entry should expire and be removed from the nhdpIibLinkSetTable.\"
REFERENCE

\"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011\"
::= { nhdpIibLinkSetEntry 5 }

-- 2-Hop Set
--

nhdpIib2HopSetTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpIib2HopSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

\"A 2-Hop Set of an interface records network addresses of symmetric 2-hop neighbors and the symmetric links to symmetric 1-hop neighbors through which these symmetric 2-hop neighbors can be reached. It consists of 2-Hop Tuples.\"
REFERENCE

\"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011\"
::= { nhdpStateObjGrp 5 }
SYNTAX NhdpIib2HopSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"NhdpIib2HopSetTable consists of 2-Hop Tuples, each representing a single network address of a symmetric 2-hop neighbor and a single MANET interface of a symmetric 1-hop neighbor.

(N2_neighbor_iface_addr_list,
 N2_2hop_addr, N2_lost, N2_time).

The entries include:
- the 2-hop neighbor addresses ('N2_neighbor_iface_addr_list'), which act as the table index,
- the associated symmetric 1-hop neighbor address set ('N2_2hop_addr'), designated through nhdpDiscIfIndex,
- a flag indicating if the 1-hop neighbor through which this 2-hop neighbor is reachable ('N2_lost') is considered lost due to link quality, or not,
- and the expiration time ('N2_time').

The nhdpIfIndex in the INDEX is the interface index of the local interface through which these 2-hop addresses are accessible. The nhdpDiscIfIndex in the INDEX represents the 1-hop neighbor interface through which these 2-hop neighbor addresses are reachable."

REFERENCE

"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011
and
RFC 7466 - An Optimization for the Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Dearlove, C., and T. Clausen, March 2015"

INDEX { nhdpIfIndex,
 nhdpDiscIfIndex,
 nhdpIib2HopSetIpAddressType,
 nhdpIib2HopSetIpAddress }
::= { nhdpIib2HopSetTable 1 }
NhdpIib2HopSetEntry ::= SEQUENCE {
 nhdpIib2HopSetIpAddressType
 InetAddressType,
 nhdpIib2HopSetIpAddress
 InetAddress,
 nhdpIib2HopSetIpAddrPrefixLen
InetAddressPrefixLength,

nhdpIib2HopSet1HopIfIndex

NeighborIfIndex,

nhdpIib2HopSetN2Time

TimeStamp,

nhdpIib2HopSetN2Lost

TruthValue

}
to the nhdpIib2HopSetIpAddress to determine
the address prefix. A row match is true
if the address used as an index falls within
the network address range defined by the
address prefix."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
::= { nhdpIib2HopSetEntry 3 }

nhdpIib2HopSet1HopIfIndex OBJECT-TYPE
SYNTAX NeighborIfIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"nhdpIib2HopSet1HopIfIndex is
nhdpDiscIfIndex of the 1-hop
neighbor that communicated the ipAddress
of the 2-hop neighbor in this row entry."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
::= { nhdpIib2HopSetEntry 4 }

nhdpIib2HopSetN2Time OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"nhdpIib2HopSetN2Time specifies the value
of sysUpTime when this entry should expire and be
removed from the nhdpIib2HopSetTable."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
::= { nhdpIib2HopSetEntry 5 }

nhdpIib2HopSetN2Lost OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"nhdpIib2HopSetN2Lost corresponds to N2_lost of NHDP and
is a boolean flag, describing if for a 2-Hop Tuple, the
corresponding Link Tuple currently is considered lost
due to link quality."

REFERENCE
"RFC 7466 - An Optimization for the Mobile Ad Hoc
Network (MANET) Neighborhood Discovery Protocol (NHDP),
Dearlove, C., and T. Clausen, March 2015

::= {nhdpIib2HopSetEntry 6}

--
-- Neighbor Information Base (NIB)
--
-- Each router maintains a Neighbor Information Base
-- that records information about addresses of
-- current and recently symmetric 1-hop neighbors.

NhdpNibNeighborSetTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpNibNeighborSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A router's Neighbor Set records all
network addresses of each 1-hop neighbor."
REFERENCE "RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
::= { nhdpStateObjGrp 6 }

NhdpNibNeighborSetEntry OBJECT-TYPE
SYNTAX NhdpNibNeighborSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A router's Neighbor Set consists
of Neighbor Tuples, each representing
a single 1-hop neighbor:

(N_neighbor_addr_list, N_symmetric)"
REFERENCE "RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
INDEX { nhdpDiscRouterIndex }
::= { nhdpNibNeighborSetTable 1 }

NhdpNibNeighborSetEntry ::=

SEQUENCE {
 nhdpNibNeighborSetNSymmetric
 TruthValue
}

nhdpNibNeighborSetNSymmetric OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only

Herberg, et al. Standards Track [Page 47]
RFC 7939 The NHDP-MIB August 2016

STATUS current
DESCRIPTION
"nhdpNibNeighborNSymmetric corresponds
to N_symmetric of NHDP and is a boolean flag,
describing if this is a symmetric 1-hop neighbor."
REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
::= { nhdpNibNeighborSetEntry 1 }

--
-- Lost Neighbor Set
--

nhdpNibLostNeighborSetTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpNibLostNeighborSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A router's Lost Neighbor Set records network
addresses of routers that were recently
symmetric 1-hop neighbors but are now
advertised as lost."
REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
::= { nhdpStateObjGrp 7 }

nhdpNibLostNeighborSetEntry OBJECT-TYPE
SYNTAX NhdpNibLostNeighborSetEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A router's Lost Neighbor Set consists of
Lost Neighbor Tuples, each representing a
single such network address:

(NL_neighbor_addr, NL_time)"
REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
Discovery Protocol (NHDP), Clausen, T., Dearlove,
C., and J. Dean, April 2011"
INDEX { nhdpDiscRouterIndex }
NhdpNibLostNeighborSetEntry ::=
 SEQUENCE {
 nhdpNibLostNeighborSetNLTime
 TimeStamp
 }

NhdpNibLostNeighborSetNLTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "NhdpNibLostNeighborSetNLTime
 specifies the value of sysUpTime when this entry
 should expire and be removed from the
 NhdpNibLostNeighborSetTable."
REFERENCE
 "RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood
 Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
 ::= { nhdpNibLostNeighborSetEntry 1 }

--
-- nhdpPerformanceObjGrp
--
-- Contains objects that help to characterize the performance of
-- the NHDP process, typically counters.
--
nhdpPerformanceObjGrp OBJECT IDENTIFIER ::= { nhdpObjects 3 }

--
-- Objects per local interface
--

NhdpInterfacePerfTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpInterfacePerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table summarizes performance objects that are
 measured per local NHDP interface.
 NhdpIffPerfCounterDiscontinuityTime indicates
 the most recent occasion at which any one or more
 of this interface’s counters listed in this table
 suffered a discontinuity."
REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
::= { nhdpPerformanceObjGrp 1 }

nhdpInterfacePerfEntry OBJECT-TYPE
SYNTAX NhdpInterfacePerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A single entry contains performance counters for a local NHDP interface."
INDEX { nhdpIfIndex }
::= { nhdpInterfacePerfTable 1 }

NhdpInterfacePerfEntry ::==
SEQUENCE {
 nhdpIfHelloMessageXmits
 Counter32,
 nhdpIfHelloMessageRecvd
 Counter32,
 nhdpIfHelloMessageXmitAccumulatedSize
 Counter64,
 nhdpIfHelloMessageRecvdAccumulatedSize
 Counter64,
 nhdpIfHelloMessageTriggeredXmits
 Counter32,
 nhdpIfHelloMessagePeriodicXmits
 Counter32,
 nhdpIfHelloMessageXmitAccumulatedSymmetricNeighborCount
 Counter32,
 nhdpIfHelloMessageXmitAccumulatedHeardNeighborCount
 Counter32,
 nhdpIfHelloMessageXmitAccumulatedLostNeighborCount
 Counter32,
 nhdpIfPerfCounterDiscontinuityTime
 TimeStamp
}

nhdpIfHelloMessageXmits OBJECT-TYPE
SYNTAX Counter32
UNITS "messages"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A counter is incremented each time a HELLO message has been transmitted on that interface."
::= { nhdpInterfacePerfEntry 1 }

nhdpIfHelloMessageRecvd OBJECT-TYPE
 SYNTAX Counter32
 UNITS "messages"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A counter is incremented each time a HELLO
 message has been received on that interface."
::= { nhdpInterfacePerfEntry 2 }

nhdpIfHelloMessageXmitAccumulatedSize OBJECT-TYPE
 SYNTAX Counter64
 UNITS "octets"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A counter is incremented by the number of octets in
 a HELLO message each time a HELLO message has been sent."
::= { nhdpInterfacePerfEntry 3 }

nhdpIfHelloMessageRecvdAccumulatedSize OBJECT-TYPE
 SYNTAX Counter64
 UNITS "octets"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A counter is incremented by the number of octets in
 a HELLO message each time a HELLO message has been received."
::= { nhdpInterfacePerfEntry 4 }

nhdpIfHelloMessageTriggeredXmits OBJECT-TYPE
 SYNTAX Counter32
 UNITS "messages"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A counter is incremented each time a triggered
 HELLO message has been sent."
::= { nhdpInterfacePerfEntry 5 }

nhdpIfHelloMessagePeriodicXmits OBJECT-TYPE
 SYNTAX Counter32
 UNITS "messages"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A counter is incremented each time a periodic
 HELLO message has been sent."
nhdpIfHelloMessageXmitAccumulatedSymmetricNeighborCount OBJECT-TYPE
SYNTAX Counter32
UNITS "neighbors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A counter is incremented by the number of advertised
 symmetric neighbors in a HELLO each time a HELLO
 message has been sent."
::= { nhdpInterfacePerfEntry 7 }

nhdpIfHelloMessageXmitAccumulatedHeardNeighborCount OBJECT-TYPE
SYNTAX Counter32
UNITS "neighbors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A counter is incremented by the number of advertised
 heard neighbors in a HELLO each time a HELLO
 message has been sent."
::= { nhdpInterfacePerfEntry 8 }

nhdpIfHelloMessageXmitAccumulatedLostNeighborCount OBJECT-TYPE
SYNTAX Counter32
UNITS "neighbors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A counter is incremented by the number of advertised
 lost neighbors in a HELLO each time a HELLO
 message has been sent."
::= { nhdpInterfacePerfEntry 9 }

nhdpIfPerfCounterDiscontinuityTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of sysUpTime on the most recent occasion at which
 any one or more of this interface's counters suffered a
 discontinuity. If no such discontinuities have occurred
 since the last reinitialization of the local management
 subsystem, then this object contains a zero value."
::= { nhdpInterfacePerfEntry 10 }

--
-- Objects per discovered neighbor interface
--

nhdpDiscIfSetPerfTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpDiscIfSetPerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A router's set of performance properties for
each discovered interface of a neighbor."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpPerformanceObjGrp 2 }

nhdpDiscIfSetPerfEntry OBJECT-TYPE
SYNTAX NhdpDiscIfSetPerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "There is an entry for each discovered interface of a neighbor."
REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
INDEX { nhdpDiscIfIndex }

::= { nhdpDiscIfSetPerfTable 1 }

NhdpDiscIfSetPerfEntry ::= SEQUENCE {
 nhdpDiscIfRecvdPackets Counter32,
 nhdpDiscIfExpectedPackets Counter32
}

nhdpDiscIfRecvdPackets OBJECT-TYPE
SYNTAX Counter32
UNITS "packets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This counter increments each time this router receives a packet from that interface of the neighbor."
REFERENCE

Herberg, et al. Standards Track [Page 53]
RFC 7939 The NHDP-MIB August 2016

"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"

::= { nhdpDiscIfSetPerfEntry 1 }

nhdpDiscIfExpectedPackets OBJECT-TYPE
SYNTAX Counter32
UNITS "packets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This counter increments by the number of missed packets from this neighbor based on the packet sequence number each time this
router receives a packet from that interface of the neighbor.

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
::= { nhdpDiscIfSetPerfEntry 2 }

--
-- Objects concerning the Neighbor Set
--

nhdpNibNeighborSetChanges OBJECT-TYPE
SYNTAX Counter32
UNITS "changes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This counter increments each time the Neighbor Set changes. A change occurs whenever a new Neighbor Tuple has been added, a Neighbor Tuple has been removed, or any entry of a Neighbor Tuple has been modified."
::= { nhdpPerformanceObjGrp 3 }

--
-- Objects per discovered neighbor
--

nhdpDiscNeighborSetPerfTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpDiscNeighborSetPerfEntry
MAX-ACCESS not-accessible
STATUS current

Description
"A router's set of discovered neighbors and their properties."
REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
::= { nhdpPerformanceObjGrp 4 }

NhdpDiscNeighborSetPerfEntry OBJECT-TYPE
SYNTAX NhdpDiscNeighborSetPerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The entries include the nhdpDiscRouterIndex of the discovered router as well as performance objects related to changes of the Neighbor Set."
REFERENCE
NhdpDiscNeighborSetPerfEntry ::=
SEQUENCE {
 nhdpDiscNeighborNibNeighborSetChanges
 Counter32,
 nhdpDiscNeighborNibNeighborSetUpTime
 TimeStamp,
 nhdpDiscNeighborNibNeighborSetReachableLinkChanges
 Counter32
}

NhdpDiscNeighborNibNeighborSetChanges OBJECT-TYPE
SYNTAX Counter32
UNITS "changes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object returns the number of changes to the given Neighbor Tuple."
REFERENCE "RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
::= { nhdpDiscNeighborSetPerfEntry 1 }

NhdpDiscNeighborNibNeighborSetUpTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object returns the sysUpTime when a new nhdpNibNeighborSetEntry has been created for a particular nhdpNibNeighborSetRouterIndex."
REFERENCE "RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
::= { nhdpDiscNeighborSetPerfEntry 2 }

NhdpDiscNeighborNibNeighborSetReachableLinkChanges OBJECT-TYPE
SYNTAX Counter32
UNITS "changes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object counts each time the neighbor changes the interface(s) over which it is reachable. A change in the set of Link Tuples corresponding to the appropriate Neighbor Tuple is registered,
i.e., a corresponding Link Tuple is added or removed from the set of all corresponding Link Tuples."

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
::= { nhdpDiscNeighborSetPerfEntry 3 }

-- Objects per discovered 2-hop neighbor

--

NhdpIib2HopSetPerfTable OBJECT-TYPE
SYNTAX SEQUENCE OF NhdpIib2HopSetPerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This table contains performance objects per discovered 2-hop neighbor."
REFERENCE "RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
::= { nhdpPerformanceObjGrp 5 }

NhdpIib2HopSetPerfEntry OBJECT-TYPE
SYNTAX NhdpIib2HopSetPerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The entries contain performance objects per discovered 2-hop neighbor."
REFERENCE "RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
INDEX { nhdpDiscRouterIndex }
::= { nhdpIib2HopSetPerfTable 1 }

NhdpIib2HopSetPerfEntry ::= SEQUENCE {
 nhdpIib2HopSetPerfChanges Counter32,
 nhdpIib2HopSetPerfUpTime TimeStamp
}

NhdpIib2HopSetPerfChanges OBJECT-TYPE
SYNTAX Counter32
UNITS "changes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object counts the changes of the union of all
N2_neighbor_iface_addr_list of 2-Hop Tuples with an N2_2hop_addr equal to one of the given 2-hop neighbor's addresses.

REFERENCE
"RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP), Clausen, T., Dearlove, C., and J. Dean, April 2011"
::= { nhdpIib2HopSetPerfEntry 1 }

nhdpIib2HopSetPerfUpTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object returns the sysUpTime when the 2-Hop Tuple corresponding to the given 2-hop neighbor IP address was registered in the nhdpIib2HopSetTable."

-- nhdpNotifications
--

nhdpNotificationsObjects OBJECT IDENTIFIER ::= { nhdpNotifications 0 }
nhdpNotificationsControl OBJECT IDENTIFIER ::= { nhdpNotifications 1 }
nhdpNotificationsStates OBJECT IDENTIFIER ::= { nhdpNotifications 2 }

-- nhdpNotificationsObjects

nhdpNbrStateChange NOTIFICATION-TYPE
OBJECTS { nhdpIfName, -- The originator of the notification.
 nhdpNbrState -- The new state
}
STATUS current
DESCRIPTION
"nhdpNbrStateChange is a notification sent when more than nhdpNbrStateChangeThreshold neighbors change their status (i.e., 'down(0)', 'asymmetric(1)', or 'symmetric(2)') within a time window of nhdpNbrStateChangeWindow."
::= { nhdpNotificationsObjects 1 }

nhdp2HopNbrStateChange NOTIFICATION-TYPE
OBJECTS { nhdpIfName, -- The originator
 nhdp2HopNbrState -- The new state
 -- of the notification
}
nhdp2HopNbrStateChange is a notification sent when more than nhdp2HopNbrStateChangeThreshold 2-hop neighbors change their nhdp2HopNbrState within a time window of nhdp2HopNbrStateChangeWindow."

::= { nhdpNotificationsObjects 2 }

nhdpIfStateChange NOTIFICATION-TYPE
OBJECTS { nhdpIfName, -- The local interface
 nhdpIfStatus -- The new status
 }
STATUS current
DESCRIPTION
"nhdpIfStateChange is a notification sent when nhdpIfStatus has changed on this interface."
::= { nhdpNotificationsObjects 3 }

-- nhdpNotificationsControl

nhdpNbrStateChangeThreshold OBJECT-TYPE
SYNTAX Integer32 (0..255)
UNITS "changes"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A threshold value for the nhdpNbrStateChange object. If the number of occurrences exceeds this threshold within the previous nhdpNbrStateChangeWindow, then the nhdpNbrStateChange notification is to be sent.

It is recommended that the value of this threshold be set to at least 10 and higher in dense topologies with frequent expected topology changes."
DEFVAL { 10 }
::= { nhdpNotificationsControl 1 }

nhdpNbrStateChangeWindow OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A time window for the nhdpNbrStateChange object. If the
number of occurrences exceeds the
nhdpNbrStateChangeThreshold
within the previous nhdpNbrStateChangeWindow,
then the nhdpNbrStateChange notification
is to be sent.

It is recommended that the value for this
window be set to at least 5 times the
nhdpHelloInterval.

This object represents the time in hundredths
of a second."
DEFVAL { 1000 }
::= { nhdpNotificationsControl 2 }

nhdp2HopNbrStateChangeThreshold OBJECT-TYPE
SYNTAX Integer32 (0..255)
UNITS "changes"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A threshold value for the
nhdp2HopNbrStateChange object. If the
number of occurrences exceeds this threshold
within the previous nhdp2HopNbrStateChangeWindow,
then the nhdp2HopNbrStateChange notification
is to be sent.

It is recommended that the value of this
threshold be set to at least 10 and higher
when topologies are expected to be highly dynamic."
DEFVAL { 10 }
::= { nhdpNotificationsControl 3 }

nhdp2HopNbrStateChangeWindow OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A time window for the
nhdp2HopNbrStateChange object. If the
number of occurrences exceeds the
nhdp2HopNbrStateChangeThreshold
within the previous nhdp2HopNbrStateChangeWindow,
then the nhdp2HopNbrStateChange notification
is to be sent.

It is recommended that the value for this
window be set to at least 5 times
nhdpHelloInterval.

This object represents the time in hundredths
of a second."
DEFVAL { 1000 }
::= { nhdpNotificationsControl 4 }

-- nhdpNotificationStates

nhdpNbrState OBJECT-TYPE
SYNTAX INTEGER {
 down(0),
 asymmetric(1),
 symmetric(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "NHDP neighbor states. In NHDP, it is not necessary to remove Protocol Tuples from Protocol Sets at the exact time indicated, only to behave as if the Protocol Tuples were removed at that time. This case is indicated here as 'down(0)', all other cases being indicated as 'asymmetric(1)' or 'symmetric(2)'. If 'down(0)', the direct neighbor is also added to the nhdpNibLostNeighborSetTable."
::= { nhdpNotificationsStates 1 }

nhdp2HopNbrState OBJECT-TYPE
SYNTAX INTEGER {
 down(0),
 up(1),
 notconsidered(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "NHDP 2-hop neighbor states. In NHDP, it is not necessary to remove Protocol Tuples from Protocol Sets at the exact time indicated, only to behave as if the Protocol Tuples were removed at that time. This case is indicated here as 'down(0)'; otherwise, it is either 'up(1)', if N2_lost for the 2-Hop Tuple is equal to false, or 'notconsidered(2)' otherwise."
::= { nhdpNotificationsStates 2 }

--
-- nhdpConformance information
--

nhdpCompliances OBJECT IDENTIFIER ::= { nhdpConformance 1 }
nhdpMIBGroups OBJECT IDENTIFIER ::= { nhdpConformance 2 }
-- Compliance Statements

nhdpBasicCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The basic implementation requirements for managed network entities that implement NHDP."

MODULE -- this module
MANDATORY-GROUPS { nhdpConfigurationGroup }
::= { nhdpCompliances 1 }

nhdpFullCompliance2 MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The full implementation requirements for managed network entities that implement NHDP."

MODULE -- this module
MANDATORY-GROUPS { nhdpConfigurationGroup,
 nhdpStateGroup2,
 nhdpNotificationObjectGroup,
 nhdpNotificationGroup,
 nhdpPerformanceGroup
 }
::= { nhdpCompliances 3 }

--

-- Units of Conformance
--

nhdpConfigurationGroup OBJECT-GROUP
OBJECTS {
 nhdpIfName,
 nhdpIfStatus,
 nhdpHelloInterval,
 nhdpHelloMinInterval,
 nhdpRefreshInterval,
 nhdpLHholdTime,
 nhdpHHHoldTime,
 nhdpHystAcceptQuality,
 nhdpHystRejectQuality,
 nhdpInitialQuality,
 nhdpInitialPending,
 nhdpHpMaxJitter,
 nhdpHtMaxJitter,
 nhdpNHoldTime,
 nhdpIHHoldTime,

nhdpIfRowStatus,
nhdpLibLocalIfSetIfIndex,
 nhdpLibLocalIfSetIpAddrType,
 nhdpLibLocalIfSetIpAddr,
 nhdpLibLocalIfSetIpAddrPrefixLen,
 nhdpLibLocalIfSetRowStatus,
 nhdpLibRemovedIfAddrSetIfIndex,
 nhdpLibRemovedIfAddrSetIpAddrType,
 nhdpLibRemovedIfAddrSetIpAddr,
 nhdpLibRemovedIfAddrSetIpAddrPrefixLen,
 nhdpLibRemovedIfAddrSetRowStatus,
 nhdpLibRemovedIfAddrSetIRTime
}

STATUS current
DESCRIPTION "Set of NHDP configuration objects implemented
in this module."
::= { nhdpMIBGroups 2 }

nhdpPerformanceGroup OBJECT-GROUP
OBJECTS {
 nhdpIfHelloMessageXmits,
 nhdpIfHelloMessageRecvd,
 nhdpIfHelloMessageXmitAccumulatedSize,
 nhdpIfHelloMessageRecvdAccumulatedSize,
 nhdpIfHelloMessageTriggeredXmits,
 nhdpIfHelloMessagePeriodicXmits,
 nhdpIfHelloMessageXmitAccumulatedSymmetricNeighborCount,
 nhdpIfHelloMessageXmitAccumulatedHeardNeighborCount,
 nhdpIfHelloMessageXmitAccumulatedLostNeighborCount,
 nhdpIfPerfCounterDiscontinuityTime,
 nhdpDiscIfRecvdPackets,
 nhdpDiscIfExpectedPackets,
 nhdpNibNeighborSetChanges,
 nhdpDiscNeighborNibNeighborSetChanges,
 nhdpDiscNeighborNibNeighborSetUpTime,
 nhdpDiscNeighborNibNeighborSetReachableLinkChanges,
 nhdpIib2HopSetPerfChanges,
 nhdpIib2HopSetPerfUpTime
}

STATUS current
DESCRIPTION "Set of NHDP performance objects implemented
in this module."
::= { nhdpMIBGroups 4 }
nhdpNbrStateChangeWindow,
nhdp2HopNbrStateChangeThreshold,
nhdp2HopNbrStateChangeWindow,
nhdpNbrState,
nhdp2HopNbrState
}

STATUS current
DESCRIPTION "Set of NHDP notification objects implemented in this module."
::= { nhdpMIBGroups 5 }

nhdpNotificationGroup NOTIFICATION-GROUP
NOTIFICATIONS {
 nhdpNbrStateChange,
 nhdp2HopNbrStateChange,
 nhdpIfStateChange
}

STATUS current
DESCRIPTION "Set of NHDP notifications implemented in this module."
::= { nhdpMIBGroups 6 }

nhdpStateGroup2 OBJECT-GROUP
OBJECTS {
 nhdpUpTime,
 nhdpIfStateUpTime,
 nhdpDiscRouterIndex,
 nhdpDiscIfIndex,
 nhdpDiscIfSetIpAddrType,
 nhdpDiscIfSetIpAddr,
 nhdpDiscIfSetIpAddrPrefixLen,
 nhdpIibLinkSetLHeardTime,
 nhdpIibLinkSetLSymTime,
 nhdpIibLinkSetLPending,
 nhdpIibLinkSetLLost,
 nhdpIibLinkSetLTime,
 nhdpIib2HopSetIpAddrPrefixLen,
 nhdpIib2HopSet1HopIfIndex,
 nhdpIib2HopSetN2Time,
 nhdpIib2HopSetN2Lost,
 nhdpNibNeighborSetNSymmetric,
 nhdpNibLostNeighborSetNLTime
}

-- Deprecated compliance statements and groups

nhdpFullCompliance MODULE-COMPLIANCE
STATUS deprecated
DESCRIPTION
"The full implementation requirements for
managed network entities that implement
NHDP.

For version-independence, this compliance statement
is deprecated in favor of nhdpFullCompliance2."

MODULE -- this module
MANDATORY-GROUPS { nhdpConfigurationGroup,
 nhdpStateGroup,
 nhdpNotificationObjectGroup,
 nhdpNotificationGroup,
 nhdpPerformanceGroup
}
::= { nhdpCompliances 2 }

nhdpStateGroup OBJECT-GROUP
OBJECTS {
 nhdpUpTime,
 nhdpIfStateUpTime,
 nhdpDiscRouterIndex,
 nhdpDiscIfIndex,
 nhdpDiscIfSetIpAddrType,
 nhdpDiscIfSetIpAddr,
 nhdpDiscIfSetIpAddrPrefixLen,
 nhdpIibLinkSetLHeardTime,
 nhdpIibLinkSetLSymTime,
 nhdpIibLinkSetLPending,
 nhdpIibLinkSetLLost,
 nhdpIibLinkSetLTime,
 nhdpIib2HopSetIpAddrPrefixLen,
 nhdpIib2HopSet1HopIfIndex,
 nhdpIib2HopSetN2Time,
 nhdpNibNeighborSetNSymmetric,
 nhdpNibLostNeighborSetNLTime

Herberg, et al. Standards Track [Page 65]
RFC 7939 The NHDP-MIB August 2016

}
STATUS deprecated
DESCRIPTION
"Set of NHDP state objects implemented
in this module.

For version-independence, this compliance statement
is deprecated in favor of nhdpStateGroup2."
::= { nhdpMIBGroups 3 }
END
8. Security Considerations

This MIB module defines objects for the configuration, monitoring, and notification of the Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP) [RFC6130]. NHDP allows routers to acquire topological information up to two hops away by virtue of exchanging HELLO messages. The information acquired by NHDP may be used by routing protocols. The neighborhood information, exchanged between routers using NHDP, serves these routing protocols as a baseline for calculating paths to all destinations in the MANET, relay set selection for network-wide transmissions, etc.

There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection opens devices to attack. These are the tables and objects and their sensitivity/vulnerability:

- nhdpIfStatus - This writable object turns on or off the NHDP process for the specified interface. If disabled, higher-level protocol functions, e.g., routing, would fail, causing network-wide disruptions.

- nhdpHelloInterval, nhdpHelloMinInterval, and nhdpRefreshInterval - These writable objects control the rate at which HELLO messages are sent on an interface. If set at too high a rate, this could represent a form of denial-of-service (DoS) attack by overloading interface resources.

- nhdpHystAcceptQuality, nhdpHystRejectQuality, nhdpInitialQuality, and nhdpInitialPending - These writable objects affect the perceived quality of the NHDP links and hence the overall stability of the network. If improperly set, these settings could result in network-wide disruptions.

- nhdpInterfaceTable - This table contains writable objects that affect the overall performance and stability of the NHDP process. Failure of the NHDP process would result in network-wide failure. Particularly sensitive objects from this table are discussed in the previous list items. This is the only table in the NHDP-MIB module with writable objects.

Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:

- nhdpDiscIfSetTable - The object contains information on discovered neighbors, specifically their IP address in the nhdpDiscIfSetIpAddr object. This information provides an
adversary broad information on the members of the MANET, located within this single table. This information can be used to expedite attacks on the other members of the MANET without having to go through a laborious discovery process on their own. This object is the index into the table and has a MAX-ACCESS of 'not-accessible'. However, this information can be exposed using SNMP operations.

MANET technology is often deployed to support communications of emergency services or military tactical applications. In these applications, it is imperative to maintain the proper operation of the communications network and to protect sensitive information related to its operation. Therefore, it is RECOMMENDED to provide support for the Transport Security Model (TSM) [RFC5591] in combination with TLS/DTLS [RFC6353].

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

Implementations SHOULD provide the security features described by the SNMPv3 framework (see [RFC3410]), and implementations claiming compliance to the SNMPv3 standard MUST include full support for authentication and privacy via the User-based Security Model (USM) [RFC3414] with the AES cipher algorithm [RFC3826]. Implementations MAY also provide support for the Transport Security Model (TSM) [RFC5591] in combination with a secure transport such as SSH [RFC5592] or TLS/DTLS [RFC6353].

9. Applicability Statement

This document describes objects for configuring parameters of the Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP) [RFC6130] process on a router. This MIB module, denoted NHDP-MIB, also reports state, performance information, and notifications. This section provides some examples of how this MIB module can be used in MANET network deployments.

NHDP is designed to allow routers to automatically discover and track routers one hop remote (denoted "neighbors") and routers two hops remote (denoted "2-hop neighbors"). This information is used by other MANET protocols in operation on the router to perform routing, multicast forwarding, and other functions with ad hoc and mobile networks. In the following, three example scenarios are listed where
For a Parking Lot Initial Configuration Situation - It is common for the vehicles comprising the MANET being forward deployed at a remote location, e.g., the site of a natural disaster, to be off-loaded in a parking lot where an initial configuration of the networking devices is performed. The configuration is loaded into the devices from a fixed location Network Operations Center (NOC) at the parking lot, and the vehicles are stationary at the parking lot while the configuration changes are made. Standards-based methods for configuration management from the co-located NOC are necessary for this deployment option.

For Mobile Vehicles with Low-Bandwidth Satellite Link to a Fixed NOC - Here, the vehicles carrying the MANET routers carry multiple wireless interfaces, one of which is a relatively low-bandwidth, on-the-move satellite connection that interconnects a fix NOC to the nodes of the MANET. Standards-based methods for monitoring and fault management from the fixed NOC are necessary for this deployment option.

For Fixed NOC and Mobile Local Manager in Larger Vehicles - for larger vehicles, a hierarchical network management arrangement is useful. Centralized network management is performed from a fixed NOC while local management is performed locally from within the vehicles. Standards-based methods for configuration, monitoring, and fault management are necessary for this deployment option.

10. IANA Considerations

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER value recorded in the SMI Numbers registry:

<table>
<thead>
<tr>
<th>Description</th>
<th>OBJECT IDENTIFIER value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHDP-MIB</td>
<td>{ mib-2 213 }</td>
</tr>
</tbody>
</table>

11. References

11.1. Normative References

References

Herberg, et al. Standards Track [Page 69]

RFC 7939 The NHDP-MIB August 2016

[RFC6340] Presuhn, R., "Textual Conventions for the Representation of Floating-Point Numbers", RFC 6340,
11.2. Informative References

Acknowledgements

The authors wish to thank Benoit Claise, Elwyn Davies, Justin Dean, Adrian Farrel, Joel Halpern, Michael MacFaden, Al Morton, and Thomas Nadeau for their detailed reviews and insightful comments regarding RFC 6779 and this document.

This MIB document uses the template authored by D. Harrington, which is based on contributions from the MIB Doctors, especially Juergen Schoenwaelder, Dave Perkins, C.M. Heard, and Randy Presuhn.

Authors' Addresses

Ulrich Herberg
United States of America
Email: ulrich@herberg.name
URI: http://www.herberg.name/

Robert G. Cole
US Army CERDEC
Space and Terrestrial Communications
6010 Frankford Road
Aberdeen Proving Ground, Maryland 21005
United States of America
Phone: +1 443 395-8744
Email: rgcole01@comcast.net
URI: http://www.cs.jhu.edu/~rgcole/

Ian D Chakeres
Delvin
Ellicott City, Maryland 21042
United States of America
Email: ian.chakeres@gmail.com
URI: http://www.ianchak.com/

Thomas Heide Clausen
Ecole Polytechnique